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ABSTRACT

Fusion of Dynamic and Static Features in Signature
Verification

Mustafa Semih SADAK

Department of Electronics and Communication Engineering

Doctor of Philosophy Thesis

Supervisor: Assoc. Prof. Dr. Nihan KAHRAMAN

Co-supervisor: Dr. Umut ULUDAĞ

In biometrics, accurately verifying individuals with handwritten signatures is one of

the most challenging problems due to high intra-class and low inter-class variability. In

this thesis, to help overcome this difficulty, the sound produced by the friction of paper

and pen during the signing process is evaluated as separate biometric data. Some

datasets in the literature, like the GPDS and MCYT, which are accessible to the general

public, only contain static signature images. However, the signature sound data

required for this research is not available in any publicly accessible dataset. Therefore,

in this study, a new dataset consisting of genuine and forged signatures is built from

scratch by collecting samples from 93 participants. Each participant is asked to sign

on two different paper types using two different pen types. Four samples are taken for

each paper-pen combination. The sound emerging from each signature is recorded

with the internal microphones of two particular mobile phone models including

different operating systems. As a result, a dataset consisting of signature sounds

and corresponding signature images is constructed. These two data types (signature

sound and signature image) are evaluated for biometric signature verification, both

together and separately. For the feature extraction stage, spectral flux onset envelope

and spectral centroid graphs of the sound data are plotted, and these graphs are

converted to image files. Afterward, feature vectors representing dynamic sound

data are obtained from these image files employing local binary patterns (LBP) and

scale-invariant feature transform (SIFT) algorithms. Feature vectors of static signature

images are also obtained by performing LBP and SIFT algorithms. As a classifier, the

xii



one-class support vector machine (OC-SVM) is trained with only genuine signatures

obtained from each user. Forgeries are used for testing only. In the second approach

(deep learning-based) proposed as an alternative in this study, feature extraction is

conducted with a convolutional neural network (CNN) based deep learning algorithm

instead of LBP and SIFT. The results are compared with the shallow (non-deep)

learning-based approach. Signature verification is performed with only dynamic

signature sound data, only static signature image data, and the fusion of both sound

and image data. According to different pen-paper-phone model combinations used,

the equal error rates (EER) obtained using only sound data are in the 1.08-5.38%

(Average: 3.02%) range for the shallow learning-based approach and the 1.94-5.59%

(Average: 3.48%) range for the deep learning-based approach. It is also observed

that the fusion of sound and image further increased the verification success to EER

of 0.00-1.08% (Average: 0.29%) interval for the shallow learning-based approach,

similarly EER of 0.00-2.15% (Average: 0.67%) interval for the deep learning-based

approach.

Keywords: score-level fusion, feature fusion, onset detection, signature verification,

local binary patterns, scale-invariant feature transform, image processing, audio signal

processing, support vector machines, convolutional neural networks

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
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ÖZET

İmza Doğrulamada Dinamik ve Statik Özelliklerin
Birleştirilmesi

Mustafa Semih SADAK

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Doktora Tezi

Danı̧sman: Doç. Dr. Nihan KAHRAMAN

Eş-Danı̧sman: Dr. Umut ULUDAĞ

Biyometri alanında, bireylerin el yazısı imzalarıyla başarılı bir şekilde doğrulanması,

sınıf içi yüksek ve sınıflar arası düşük deği̧skenliğin olması nedeniyle en zorlu

yöntemlerden biridir. Bu tezde, bu zorluğun üstesinden gelinmesine yardımcı olmak

için, imzalama sırasında kağıt ve kalemin sürtünmesiyle ortaya çıkan ses, ayrı bir

biyometrik veri olarak değerlendirilmi̧stir. Literatürde, GPDS ve MCYT gibi bazı

eri̧sime açık veri tabanları yalnızca statik imza görüntüleri içerir. Ancak bu çalı̧sma

için gerekli olan ses verilerini içeren eri̧sime açık bir veri tabanı bulunmamaktadır.

Bu nedenle, bu çalı̧smada 93 katılımcıdan örnekler toplanarak orijinal ve sahte

imzalardan oluşan yeni bir veri tabanı sıfırdan oluşturulmuştur. Her katılımcıdan

iki farklı kalem türü kullanarak iki farklı kağıt türüne imza atması istenmi̧stir. Her

bir kağıt-kalem kombinasyonu için dört imza alınmı̧stır. Her imzadan çıkan ses,

ayrı i̧sletim sistemlerine sahip iki farklı cep telefonu modelinin dahili mikrofonları

ile kayıt altına alınmı̧stır. Sonuçta imza sesleri ve bu seslere karşılık gelen imza

görüntülerinden oluşan bir veri seti üretilmi̧stir. Bu iki veri tipi (imza sesi ve

imza görüntüsü) hem birlikte hem de ayrı ayrı olarak biyometrik imza doğrulama

için değerlendirilmi̧stir. Öznitelik çıkarma aşaması için ses verilerinin spektral akı

başlangıç zarfı ve spektral merkez grafikleri çizilmi̧s ve bu grafikler görüntü (image)

formatına dönüştürülmüştür. Bu görüntü dosyalarından yerel ikili desenler (LBP) ve

ölçek deği̧smez özellik dönüşümü (SIFT) algoritmaları ile dinamik ses verilerini temsil

eden özellik vektörleri elde edilmi̧stir. Statik imza görüntülerinin öznitelik vektörleri

de LBP ve SIFT algoritmaları ile elde edilmi̧stir. Sınıflandırıcı olarak, tek-sınıf destek
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vektör makinesi (OC-SVM), her kullanıcıdan alınan orijinal imzalarla eğitilmi̧stir.

Sahte imza örnekleri sadece test için kullanılmı̧stır. Bu çalı̧smada alternatif olarak

önerilen ikinci yaklaşımda (derin öğrenme tabanlı), LBP ve SIFT yerine evri̧simsel

sinir ağları (CNN) tabanlı bir derin öğrenme algoritması ile öznitelik çıkarımının

gerçekleştirildiği bir imza doğrulama sistemi geli̧stirilmi̧s ve derin öğrenme tabanlı

olmayan (sığ) yaklaşımla karşılaştırılmı̧stır. İmza doğrulama yalnızca dinamik imza

ses verileri, yalnızca statik imza görüntü verileri ve hem ses hem de görüntü verilerinin

birleştirilmesiyle gerçekleştirilmi̧stir. Kullanılan farklı kalem-kağıt-telefon modeli

kombinasyonlarına göre, yalnızca ses verileri kullanılarak elde edilen eşit hata oranları

(EER), sığ öğrenme tabanlı yaklaşım için %1.08-5.38 (Ortalama: 3.02%) aralığında

ve derin öğrenme tabanlı yaklaşım için %1.94-5.59 (Ortalama: 3.48%) aralığında

olmuştur. Ayrıca, ses ve görüntünün birleştirilmesinin, sığ öğrenme tabanlı yaklaşımda

%0.00-1.08 (Ortalama: 0.29%) EER aralığına ve benzer şekilde derin öğrenmeye

dayalı yaklaşımda %0.00-2.15 (Ortalama: 0.67%) EER aralığına doğrulama başarısını

yükselttiği gözlemlenmi̧stir.

Anahtar Kelimeler: skor düzeyinde füzyon, özellik füzyonu, başlangıç tespiti, imza

doğrulama, yerel ikili örüntüler, ölçek-deği̧smez özellik dönüşümü, görüntü i̧sleme,

ses sinyali i̧sleme, destek vektör makineleri, evri̧simsel sinir ağları

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

Biometrics refers to measurable, distinctive data, including iris, face, fingerprint,

palm vein map, voice, handwritten signature, and so forth, that serves to identify

or verify individuals. This data can be categorized into behavioral biometrics and

physical biometrics. Physical biometrics, such as the iris, face, and fingerprint, is the

unique data that a person has without revealing his/her will. In behavioral biometrics,

characteristic features such as voices, gestures, and handwritten signatures arise from

consent and appropriate actions of individuals [1].

A handwritten signature is a behavioral biometric that represents people’s will and

is used to validate and adopt texts in many areas such as finance, education, health,

security, and law. Thus, the success of verification of this biometric data, which causes

people to assume responsibilities, is of great importance. Handwritten signature

biometric systems, which are frequently used in daily life, can be evaluated under

two categories: signature identification and signature verification. The signature

identification process is to determine whether an individual’s signature biometric is

included in any of the signature classes previously introduced to the system. Signature

verification, on the other hand, is to determine whether the signature belongs to a

particular person (with claimed identity) or not. In addition, according to the technical

characteristics of the signature biometric systems, the cited signatures can be divided

into offline signatures and online signatures [2]. Online signatures are taken with

the help of digital surface devices such as pressure-sensitive tablets. Thus, while

signing, pen movements are monitored with motion detectors. Dynamic features

of the signature, like pen pressure, the number of strokes, speed, and duration are

captured together with its static shape. An offline signature is a static image of a

signature on a piece of paper or a non-digital similar object. In offline signatures,

there is no dynamic data of the signature, only the static form of the signature.

In signature verification research, the impact of methods, algorithms, and designs

used in preprocessing, feature extraction, and classification stages is crucial. Recent

research has revealed two commonly used methods for classification or feature

1



extraction: writer-dependent (WD) and writer-independent (WI) methods. Studies

have also suggested combining these two methodologies to develop hybrid techniques.

A unique classifier is prepared for every single participant to train the model in the

WD classification strategy. A global classifier training model for all users is prominent

in the WI classification technique. In the WI technique, there is just one classifier, and

it is suitable for all users. These two approaches (WD and WI) are valid not only for

classification purposes but also for the training networks and algorithms used in the

feature extraction stages. In this thesis, a writer-independent procedure is used in the

feature extraction step, while a writer-dependent technique is used in the classification

step. In addition to all these, the number of signature samples used for the training of

the signature verification system and whether forgeries are used together with genuine

signature samples in the training of the system or not are also substantial. Because

in real-life applications, many signature samples belonging to one person may not

be available [3]. Likewise, forgeries of a person’s signature are often unavailable

beforehand. As a result, factors such as training a signature verification system with

as few samples as possible and not using forgeries during training make that system

more applicable. Forgeries can be used to test the system. In this case, the type

of forgeries used in the system plays a key role. Forgeries may be examined under

three headings: a) Random Forgery, b) Simple Forgery, and c) Skilled Forgery. If the

forger does not know the name of the person whose signature he/she is imitating and

has never seen his/her signature, such signatures are random forgeries. If the forger

knows the name of the person whose signature he/she is imitating and has never

seen his/her signature, such signatures are simple forgeries. If the forger has seen

the signature of the person he/she is imitating and has practiced repeatedly to imitate

that signature, such signatures are skilled forgeries. Skilled forgery-type signatures

are the most effective samples to test for evaluating the system because such forgeries

are in the category that most closely resembles genuine signatures. To be appropriate

in real-world applications, the classifier network in this study was trained using just

four genuine signatures. Skilled forgeries, the most compelling of forgery types for

verification accuracy, were used only for testing purposes in the proposed system. The

False Rejection Rate (FRR) of genuine signatures, the False Acceptance Rate (FAR)

of forgeries, and the Genuine Accept Rate (GAR) (GAR=1-FRR) are typically used to

measure system performance. Additionally, it is usual practice to report other metrics

such as the Average Error Rate (AER), which is the average of FAR and FRR, or the

Equal Error Rate (EER), which is the error rate where both FAR and FRR are equal.

Another indicator of verification findings is the Receiver Operator Characteristics

(ROC) curve, which is a graphical representation linking GAR and FAR acquired at

differing acceptance thresholds.
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In business, commerce, legal, and other related fields, signing documents can subject

people to significant financial and moral obligations. Since signatures are such a

common form of verification, people who wish to harm may abuse them or use them

in fraudulent transactions. The detection and verification of the validity or forgery

of signatures, and biometric features of individuals, is thus an essential research

topic. The biggest challenge that signature verification systems face is high intra-class

variability and low inter-class variability. That is, the similarity between an individual’s

signatures may be low, and the similarity between his signature and a forgery provided

by someone else may be high. Using more than one biometric data is one of the helpful

approaches to overcome this difficulty. When two or more different biometric features

are combined, it is called multimodal biometric or biometric fusion and brings high

confidence to verification or identification success (i.e., iris and fingerprint). Biometric

approaches that verify or recognize only based on a single biometric data are called

unimodal biometric systems [4]. In this thesis, in addition to offline signatures, the

sound generated during signing as dynamic data is recorded as another biometric

data. Hence the data required for successful verification is enriched. So, a kind

of multimodal biometric system that makes verification using these two particular

biometric data (static and dynamic) is designed. The motivation behind employing

sound data is a dynamic sound signal is more difficult for imitators to imitate than

a static image of the signature. In addition, acquiring, copying, and recording audio

data is more complex than image data. Also, it is easier to record audio containing

dynamic data with the help of just a microphone rather than using tablets with a

customized digital surface, as is the case with capturing online signatures [5]. Besides,

signing on such digital surfaces can be a bit clumsy. Moreover, the cost of processing

separate raw data such as pressure, velocity, time, and acceleration obtained with

tablets or devices used in online signature verification systems is higher than the cost

of processing audio data recorded with a microphone, which contains an associated

summary form of these data in a single signal [6].

Outcomes from the combination of signature sound and signature image used in

signature verification for 75 participants are published as an article [7]. Furthermore,

in a conference paper [8], preliminary findings were provided in the scope of this

study, utilizing just the sound of signatures to extract features.

1.1 Literature Review

Signature verification studies have progressed in various stages from the 1970s to the

present. Studies on online signatures were included later in the process that initially

started with offline signatures. As a result, many methods, algorithms, and techniques
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have been applied and published to date for online and offline signature verification.

However, there are other studies published elsewhere on verifying the signature by

analyzing the sound generated from the movement of the pen on paper or evaluating

this sound as an extra feature, which relatively is a new approach investigated in

this study, although not many. So the literature review has been conducted under

two categories; a) Literature Review on Signature Sound (Dynamic) and b) Literature

Review on Offline (Static) Signature Image

1.1.1 Literature Review on Sound of Signature

Many types of research in which signature sound, handwriting sound, and even the

sound of signing on the tablet are evaluated separately in the studies published to date

in terms of their performance in data collection, preprocessing, feature extraction, and

classification steps. The detailed information of these studies is summarized in Table

1.1.

Table 1.1 Summary of the Literature Review on Sound of Signature

Study Number of

Samples

Preprocessing Feature

Extraction

Classification Results

Seniuk and

Blostein (2009)

[9] (handwritten

word or letter

recognition)

Samples

provided by a

single writer

Gaussian

smoothing,

Rescaling power

signal,

Segmentation,

Length

normalization

Peak points and

the structures

obtained from

scale space

representations

Classification

algorithms based

on template

matching

70% (alphabet)

recognition rate

and 90% word

recognition rate

Li (2004, 2010)

[6] [5]
50 genuine, 50

forged from each

of 5 participants

Band pass filter,

Segmentation,

Rescaling,

Normalizing

Normalized

Hilbert envelope

of sounds

A

straightforward

multi-layer back

propagation

neural network

More than 75%

correctness for

different

scenarios

Khazei et al.

(2012) [10]
10 genuine

signatures from

each of 30

participants

Segmentation,

Normalization

Autoregressive

(AR) coefficients

with Burg

algorithm,

cepstrum based

features

obtained with

the log-domain

bicepstral

method

Distance-based

classifiers:

Euclidean,

Manhattan

(Cityblock) and

Chessboard.

EER between

49% and

50.133%

Armiato et al.

(2016) [11]
10 genuine, 2

forged from each

of 55

participants

Normalizing

signals

amplitudes

Combination of

wavelet-based

features

Euclidean

classifier and

Modified

correlation

classifier

Above 80%

accuracy

Continued on next page
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Table 1.1 – continued from previous page

Study Number of

Samples

Preprocessing Feature

Extraction

Classification Results

Du et al. (2018)

[12]
(handwritten

word or letter

recognition)

- Reducing

sampling rate,

Noise removal,

Enhancing the

Signal to

Interference plus

Noise Ratio

(SINR), Energy

normalization,

Removing the dc

component

Deep features

using CNN

CNN 81% word

recognition

accuracy rate

Ding et al.

(2019) [13]
112 genuine and

60 forged from

each of 14

participants

Down converting

signal, Reducing

sampling

frequency, Noise

removal with

Seasonal-Trend

Decomposition

(STD)

A novel

chord-based

method, to

estimate

phase-related

changes caused

by small

activities

Deep CNN EER: 5.5% AUC:

98.7%

Chen et al.

(2020) [14]
20 genuine, 20

forged from each

of 35

participants

Noise removal,

Performing

cross-correlation

function to

obtain impulse

response

The structural

similarity index

measure (SSIM),

Peak

signal-to-noise

ratio (PSNR),

Mean squared

error (MSE), and

Hausdorff

distance.

Logistic

Regression (LR),

Naive Bayes

(NB), Random

Forest (RF), and

Support Vector

Machine (SVM)

EER: 1.25%

AUC: 98.2%

Sadak et al.

(2020) [8]
16 genuine, 16

forged from each

of 40

participants

Segmentation,

Normalization,

Reducing

sampling

frequency

Picked peaks

from spectral

flux onset

strength

envelope of

signal

Distance based

classifier:

Dynamic Time

Warping (DTW)

EER: between

8.14% and

15.29%

Wei et al. (2021)

[15]
70 genuine

signatures, 60

random , 60

skilled forgeries

from each of 12

participants

Bandpass filter

for noise

removal,

Adaptive

thresholds for

segmentation of

sound and

vibration data,

Normalization

Zero Crossing

Rate, Spectral

Centroid,

Spectral Spread,

Sprectral Flux,

Spectral Entropy,

Spectral Rolloff

One-Class

classifier based

on CNN

EER: 5% AUC:

98.4%

Zhao et al.

(2021) [16]
32 genuine, 28

forged from each

of 40

participants used

in training

Smoothing,

Segmentation,

Phase

Unwrapping,

Zero Padding

Spatio-Temporal

Features from

Channel Impulse

Response (CIR)

CNN-based

Multi-Modal

Siamese

Network

EER: 3.27%
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1.1.1.1 Data Extraction

The public offline signature databases like CEDAR [17] and GPDS [18] do not

currently have the sound signals of offline signatures that this new technique requires.

Since there is no signature dataset consisting of audio data publicly available,

researchers who are interested in the topic must build their databases from scratch.

It is important to position the microphone so that the sounds of the signatures are

well recorded. Li (2004) [6] tested the quality of the sound data obtained in each

position separately by placing the microphone under the paper, at a distance of 20-25

cm from the pen-nib, and finally on the pen by attaching it to the pen. As a result

of the test, it was concluded that the most efficient sound recording was obtained

with the 3rd option, that is, the microphone mounted on the pen. Li [5], [6]
used 50 samples of the author’s “This pen” calligraphy to build the dataset, apart

from 50 genuine samples, 50 forgeries signed by 5 volunteers, 100 random signing

sound samples and 200 random texts of the same length with "This pen" phrase were

also included. Volunteers were given time to practice before asking them to forge

signatures. Khazaei et al. [10] collected ten signatures per person for the dataset

they built with 30 participants. Signatures were taken in an isolated environment

using the C2 condenser microphone, electronic pen, and pad. They recorded signals

with a sampling frequency of 44100 Hz. Armiato et al. [11] developed a special device

in the form of a 32×22×10 cm box to record the acoustic emissions generated during

the signing. The box’s interior is lined with soundproof foam, and a microphone is

affixed to it. They obtained a total of 550 genuine signature samples and 110 forgery

samples from 55 people, including 10 genuine signatures and 2 forgeries from each

participant. All participants used the same kind of pen and paper and were in the

same data collection setup while collecting samples. The sampling rate for each audio

data was 44100 Hz. Seniuk and Blostein [9] analyzed the sound made up of acoustic

emissions caused by friction between the pen and the surface when writing some text

by a writer. They tried to extract characters, words, and meanings from this audio data.

They built the dataset using 60 lb HP laser printer paper, Bic Round Stic Grip (fine) pen,

and Labtec PC Mic 333 microphone. The sampling rates of the collected samples were

16 kHz, with 8 bits. Samples were saved in wav extension format and written by one

person (Seniuk). Ding et al. [13] collected data by recording audio with the mobile

application they developed, which uses the built-in microphone of the Samsung Galaxy

s6. First, they collected 112 genuine signatures per person from 14 graduate students.

They then asked students to generate 12 skilled forgeries for each of the five random

participants from 14 students. As a result, they obtained a dataset including 112

genuine signature samples and 60 skilled forgery samples for each of the 14 students.

Chen et al. [14], took a different approach and asked the candidates to sign using
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the iPad Pro and Apple pencil. They captured the signature sounds produced by the

friction between the iPad Pro and the Apple pencil with the SAMSUNG galaxy note 8

and its built-in microphone. With a mobile app they developed called SilentSign, they

collected 20 genuine signatures from each of the 35 participants of various age groups,

nationalities, and genders. Using the iOS screen recording function, they recorded

the screen of how the genuine signatures were signed. Each participant watched the

videos of the five randomly selected participants to imitate. After enough practice,

each participant provided a total of 20 skilled forgeries, 4 for each randomly selected

participant. Additionally, they extracted 15 random forgeries for each participant

by taking one signature from the genuine signatures of the other 15 participants.

As a result, the dataset was created with a total of 700 genuine signatures, 700

skilled forgeries, and 525 random forgeries from 35 participants. Zhao et al. [16]
collected 40 genuine signature sounds and 35 forged signature sounds from each of

the 40 participants using HONOR Play3 including the Android 10 operating system.

Almehmadi [19] took a different approach by comparing the information manually

obtained from the signature sounds (number of straight lines, number of circles,

number of angles, number of dots, etc.) with the information obtained from the image

of the signature. He conducted his study in a silent place with 20 participants, ranging

in age from 25 to 53.

1.1.1.2 Preprocessing

Audio files are obtained by using mobile applications in some studies, microphones,

computers, and recording devices in others. Making these audio files efficient for

feature extraction is very important as it affects the success of the classification. One

of the basic steps taken for this purpose to segmentation by cropping the parts from the

beginning and end of the sound file that does not contain the necessary information

of the signing process, as in [5] [6]. Li [5] filtered the digitized signals with a 250 to

6000 Hz 4th order bandpass filter to reduce ambient noise. In the same study, sound

signals varying in lengths between 2.3 seconds and 3.7 seconds were rescaled taking

100 evenly spaced samples according to the equation;

T = 1/ f =
t2 − t1

100
(1.1)

where t1 is the starting and t2 is the terminating time of the sound signal. After the

segmentation and rescaling steps, the envelope of the sound signal was normalized to

its total energy;

E[n] =
e[n]
Ç

∑100
i=1 e2[n]

(1.2)
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Gaussian smoothing is applied to the absolute value (modulus) of the sound signal

by Seniuk and Blostein [9]. Using amplitude normalization, they rescaled the power

signal to reach the maximum amplitude of unity. As a segmentation practice, they

semi-automatically segmented the signal into constituent letters or words. In the

normalization phase, they normalized each segment to a standard time interval. They

distorted the signals to be used in tests to evaluate the robustness of classification

algorithms. The signals are distorted by applying a uniform perturbation function to

the amplitudes of the sound signals. Khazaei et al. [10] performed only segmentation

and normalization as preprocessing steps in their work. The average of all audio

data was calculated by Arimato et al. [11], and this value was subtracted from each

audio signal for normalization purposes. They also normalized the amplitudes of

the signals to be between the range of -1 and 1. Ding et al. [13] down-converted

the received sound signal by multiplying cos2π f t and -sin2π f t together with the

low-pass filter to extract the In-phase (I) and the Quadrature (Q) components of the

baseband signal and the resulting data is down-sampled by a factor of 300. They also

reduced the sampling frequency of the signal from 48 kHz to 160 Hz. To remove

the periodic ambient noise, they used a function-based method called Seasonal-Trend

Decomposition (STD). Chen et al. [14] tried to determine the vertical distance

locations of the pen tip to the microphone and aimed to derive features through these

points. A special "Adaptive Energy-based Line of Sight (LOS) Detection" technique was

developed for this purpose. They use the cross-correlation function to extract impulse

responses after the recording has begun;

IR(t) = ZC∗R(−t) ∗ ZC1024bi ts(t) (1.3)

where ZC∗R(−t) is the conjugation of the incoming baseband signal. It was presumed

that the residual noise power would resemble a Gaussian distribution and they

adopted certain formulae for noise elimination. The approximate beginning of the

LOS path was then determined using an adaptive energy-based technique in the next

stage. Du et al. [12] have a study about acoustic-based handwriting recognition.

They considered the handwriting sound that arises from the friction between paper

and pen as the main feature. By segmenting the auditory stream, they sought to

isolate and recognize the sounds of each letter. First, they reduced the sampling rate

of 44100 Hz sounds to 4410 Hz, which is sufficient to extract handwriting signal

features. In their work, an adaptive threshold according to ambient noise which

varies significantly over time is set for peak detection. To deal with the negative effect

of varying ambient noise, they used two sliding windows of different sizes. They

tried to eliminate the noise in the sound by calculating and comparing the power of

the noisy parts with one window, and the power of the meaningful parts with the
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other window. Word and letter segmentation was made according to a certain time

threshold Tword and Tlet ter between the peak values in the signals. They removed

the DC component to amplify the dynamic component. Specifically, they calculated

the average level of the sound signal and subtracted it from the sound signal.

To improve the Signal-to-Interference-plus-Noise Ratio (SINR), the high-frequency

component was removed using a low-pass filter. Finally, they used sound signal

energy normalization. Sadak et al. [8] reduced sample rates of each audio signal,

they converted signals to ’wav’ extension format and performed normalization and

segmentation for each signature sound data. Zhao et al. [16] employed smoothing,

handwritten motion segmentation, phase unwrapping, and zero padding for Channel

Impulse Respons (CIR) information extracted from acoustic signals.

1.1.1.3 Feature Extraction

In the studies published to date, for the feature extraction phase, various approaches

have been developed. Signing sound’s Normalized Hilbert envelope was employed by

Li [5] [6] as a feature space. He obtained the envelope signal by the equation;

e[n] = |s[n] + jH{s[n]}| (1.4)

where e[n] is Hilbert transform envelope of signal, s[n] is nth sample of the writing

sound and H{s[n]} is the discrete Hilbert transform of s[n]. Peak points and structures

derived from scale-space representations were regarded by Seniuk and Blostein [9] as

feature vectors. Khazei et al. [10] extracted Autoregressive (AR) coefficients with

the Burg algorithm and they obtained cepstrum-based features with the log-domain

bicepstral method. The mathematical representation of AR is as follows:

x t =
N
∑

i=1

ai x t−i + ϵt (1.5)

where N is the order of the filter, ai is the i th AR coefficient, x t is the sound

signal series, and ϵt is assumed as Gaussian white noise. Armiato et al. [11]
designed a feature extraction approach based on the combination of wavelet-based

features. They employed the wavelet-packet transforms, trying 48 different wavelet

filters. To estimate phase-related changes caused by small activities, Ding et al.

[13] adopted a chord-based method. They extracted frequency-domain features

using a discrete cosine transform (DCT), considering the estimated phase-related

changes. They obtained 8 pairs of ∆Chord and Accelerat ion sequences for each

sound signal sequence. Then DCT is used to get the frequency-domain characteristics

for each ∆Chord or Accelerat ion sequence scaled to a 0-1 range. Thus, they
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achieved effective size reduction by adopting DCT. Chen et al. [14] calculated The

Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean

Squared Error (MSE), and Hausdorff Distance as features and they constructed a

four-dimensional similarity feature vector from two Impulse Responses IRA and IRB.

They called the feature vector genuine or forgery, depending on whether IRA and IRB

are produced from the same genuine signature dataset. Du et al. [12] transformed

the sound signal into a gray-scale image. They obtained the time-ordered frequency

feature sequence by applying Short Term Fourier Transform (STFT) to the audio signal.

In their study, Convolutional Neural Network (CNN) algorithm-based deep features

are determined from the images, instead of artificial or handcrafted features. Sadak

et al. [8] extracted time-ordered spectral flux onset points as features. Wei et al.

[15] adopted Zero Crossing Rate, Spectral Centroid, Spectral Spread, Spectral Flux,

Spectral Entropy, and Spectral Rolloff features. Zhao et al. [16] used Spatio-Temporal

characteristics taken from the CIR data as features.

1.1.1.4 Classification

Many approaches in the studies published to date with the classification phase in which

signatures are labeled as genuine or forgery. Li [5] [6] proposed a straightforward

multi-layer back propagation neural network presented for classifying patterns of

signature sounds. He used multi-layer network architecture with linear basis and

sigmoid activation functions which are trained by a back-propagation algorithm. In his

approach, the neural network includes 100 input neurons that receive input vectors

containing 100 data points from the pre-processor. Moreover, there are two hidden

layers with 40 and 5 neurons, respectively, and a single output neuron. In his studies,

a single continuous node was used to facilitate the training process, and a predefined

threshold was used for decision-making. Seniuk and Blostein [9] investigated three

approaches based on template matching; Integrating the absolute difference between

two signals is the first one. In this approach, training data is used directly as a

set of templates. Then similarity of a query signal to a template is defined as the

integral of the absolute value of the difference between the two timespan-normalized

and amplitude-clipped signals. If the two signals are the same, the integral is equal

to zero. Bigger numbers mean less similarity. The second one is to use the edit

distance algorithm to compare the two signals’ time-ordered peaks. The final one

is comparing the structures produced from the signal representations in scale space.

In this last approach, using structure and characteristics obtained from a scale space

representation of the signal, they devised an algorithm independent of window size.

Khazei et al. [10] compared three distance-based classifiers: Euclidean, Manhattan

(Cityblock), and Chessboard. According to the results, the top-performing classifier
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Figure 1.1 CNN Architecture [13]

was the one that used Euclidean distance and complex cepstrum features. Armiato

et al. [11] proposed two separate classification approaches to compare the feature

vectors. Euclidean classifier is their primary option because of its ease of use and

prior pattern-matching findings. A modified correlation classifier, which is based on

the notion of signal similarity, is their alternative option. This method combines two

criteria to generate a similarity score using cross-correlation. According to their test

results, when the feature vector is obtained with the Daub-4 wavelet transform filter;

both classifiers have similar scores and high performance. Deep CNN was employed

by Ding et al. [13] for robust binary classification. For training and prediction, they

provided similarity distance matrices to the CNN model. Figure 1.1 gives an overview

of their adopted CNN architecture. In order to improve verification performance,

Chen et al. [14] sought to select the best classifier. Therefore, they looked at the

four classification models: Logistic Regression (LR), Naive Bayes (NB), Random Forest

(RF), and Support Vector Machine (SVM). Following their testing and comparisons,

they concluded that the SVM model was the most effective classification model

considering the features they employed. Using the Dynamic Time Warping (DTW)

distance-based classifier, Sadak et al. [8] qualified the audio signal samples as genuine

or forgery based on the values of the similarity ratios between the audio signals. A

one-class classifier based on CNN was developed by Wei et al. [15]. Zhao et al. [16]
utilized a CNN-based Multi-Modal Siamese Network as a classifier. They developed

an application called SonarSign for their proposed signature verification system and

designed the classification phase with 5-fold cross-validation. Each participant, as

previously noted, provided 40 genuine signatures and 35 skilled forgeries. The

training set for each 5-fold cross-validation consists of 32 genuine signatures and 28

skilled forgeries.

1.1.2 Literature Review on Offline (Static) Signature Image

The offline signature verification studies, summarized in Table 1.2, obtained more

successful results, especially with competitive advances over public datasets (i.e.
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GPDS, MCYT, CEDAR). In this competition, besides the success percentage, details

such as how many samples are used during the training, whether forgeries are used

or not, and what type of forgeries are used for the tests are decisive. Studies in Table

1.2 are detailed in the following sections.

Table 1.2 Summary of the Literature Review on Offline Signature

Study # Samples per

Participant

Preprocessing Feature

Extraction

Classification Results

Guerbai et al

(2015) [20]
CEDAR (12

sample) GPDS

(12 samples)

Binarization.

Noise removal

with mean filter.

The energy of

the curvelet

coefficients.

One-class SVM

classifier

AER (CEDAR):

5.60% AER

(GPDS): 15.07%

Yılmaz and

Yanıkoğlu

(2016) [21]

GPDS-160 (12

samples)

Erased strokes

that are far away

from image

centroid, The

upper and lower

contours of the

signature are

detected for

eliminating

variations in pen

tip thickness

Histogram of

Oriented

Gradients

(HOG), Local

Binary Patterns

(LBP) and Scale

Invariant Feature

transform

Descriptors

(SIFT) features.

Combination of

user-dependent

SVM and global

SVM classifiers

EER: 6.97%

Pal et al. (2016)

[22]
GPDS-100 (8

samples)

Mean filter for

removing noises,

Determining

minimum

bounding box of

the images

Local Binary

Patterns (LBP),

Uniform Local

Binary Patterns

(ULBP)

Nearest

Neighbour (NN)

classifier with an

Euclidian

distance measure

EER: 32.21%

Ooi et al. (2016)

[23]
MCYT (10

samples)

Median filter for

noise removal,

Binarizing

images

Discrete Radon

Transform (DRT)

Probabilistic

Neural Network

(PNN)

EER: 9.87%

Hafemann et al.

(2017) [24]
GPDS-960

MCYT-75 (10

samples) CEDAR

(12 sample)

Brazilian PUC-PR

(30 samples)

Removed the

background

using OTSU’s

algorithm,

Inverting and

resizing image

CNN SVM based

classifiers

EER (GPDS-160)

: 1.7% EER

(MCYT) : 2.87%

EER (CEDAR) :

4.63% EER

(Brazilian

PUC-PR) : 2.01%

Okawa (2017)

[25]
MCYT-75 Moment-based

normalization,

Histogram

normalization,

Clipping strokes,

Binarizing image

KAZE features

based on the

recent Fisher

Vector (FV)

encoding

SVM EER: 5.9%

Alaei et al.

(2017) [26]
GPDS-140 (12

samples)

Binarizing and

cropping images,

Mean filter for

noise removal

LBP-based

features

Fuzzy similarity

distance based

classifier

EER: 16.67%

Sharif et al.

(2020) [27]
CEDAR (12

samples),

MCYT(12

samples), GPDS

(12 samples)

Binarizing

images, Resizing

binary image,

Median filter

Local and global

features which

are utilized by

best feature

selection

algorithm

SVM AER (CEDAR):

4.67% AER

(MCYT): 5%

AER (GPDS):

5.42%

Continued on next page
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Table 1.2 – continued from previous page

Study # Samples per

Participant

Preprocessing Feature

Extraction

Classification Results

Gosh (2021)

[28]
GPDS-300 (12

samples),

MCYT-75 (10

samples)

resized to a fixed

size, skewness

correction

Structural and

directional

features

RNN EER

(GPDS-300):

1.46% EER

(MCYT-75):

0.34%

1.1.2.1 Data Extraction

In some of the research related to signature verification systems, those who design the

biometric systems build an exclusive data set for themselves. In such cases, it becomes

difficult to compare these studies with other studies in terms of feature extraction,

classification, etc., because the datasets they work on are different. Thanks to the

general availability of databases such as GPDS [18], CEDAR [17], MCYT [29], and

Brazilian PUC-PR [30], studies published to date can compete more objectively by

incorporating these datasets into their operations. Participants are generally required

to sign a large number of genuine signatures and/or skilled forgeries on gridded sheets

to produce these kinds of datasets. The pages are then scanned at resolutions of 300

dpi or 600 dpi to migrate data on the pages to the digital environment.

1.1.2.2 Preprocessing

The preprocessing step is an important factor since it directly affects classification

success and computational performance. In this stage, several crucial tasks

are completed, including noise reduction, background removal, alignments, size

reduction, etc. Using OTSU’s algorithm [31], Hafemann et al. [24] eliminated the

background data and set background pixels to white. After that, the image was

inverted (turned negative), and the image’s size was adjusted using predetermined

values that were supported by the neural network methods they were using. Using a

distance threshold, Yanıkoğlu and Yılmaz [21] removed strokes that are distant from

the picture centroid. To remove changes in pen tip thickness, they detected the upper

and lower contours of the signature. They used the following alignment procedure

for rotation, scaling, and fine translation.

ar gminσ,θ ,δ{||Qi
σ,θ ,δ − Ri||} (1.6)

where σ is scaling, θ is rotation, δ is fine translation Q is query signature, R is

reference signature and Qi
σ,θ ,δ is the transformed version of Q. With the optimum

scaling, rotation, and translation parameters that minimize the distance between the

query and reference signature, each query signature Q of a participant is aligned to
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each reference signature Ri of that participant. To control the position and rotation

and enhance low-contrast photos, Okawa [25] used moment-based normalization and

histogram normalization procedures. Using a mask on the image to clip the strokes,

he reduced background noises. Then, he obtained a binarized image from the original

gray-level image using a thresholding approach based on discriminant analysis. To

improve the strokes, he used a smoothing filter and dilation. In the preprocessing

stage, Pal et al. [22] identified the minimal bounding box of the images and used

a mean filter to eliminate noise from the signature images. Ooi et al. [23] used a

median filter to remove noise and a straightforward thresholding approach to binarize

the signature images. A histogram-based thresholding approach was used by Alaei et

al. [26] to binarize greyscale signature images. They utilized a mean filter to reduce

noise. Input images were under-sampled and cropped to determine the signature

images’ minimal bounding boxes. Dey et al. [32] fixed the sizes of all the signature

images using bilinear interpolation. They converted the original images into negative

images and then normalized each image by dividing the pixel values by the standard

deviation of the pixel values across all the images in the dataset. To extract the binary

image from the signature image, Sharif et al. [27] used Otsu segmentation. They

downsized the binary picture to 256×256 pixel size, and on the resulting image, they

performed certain morphological operations, including thinning (erosion) and closing

(dilation+ erosion). They utilized a median filter to reduce noise. Taking into account

the largest signature, Each image of the signatures was scaled by Pinzon et al. [33]
to a certain size. By turning the image grayscale and adjusting the contrast, they

removed any stains or dirt and enhanced it. By applying Otsu’s algorithm, Ruiz et

al. [34] binarized signature images and used a 3×3 sized kernel to make signature

strokes wider. They reduced the size of the signature images to the predetermined

128×128 pixel size. For neural network training, they normalized pixel data from (0,

255) to (0, 1). To eliminate differences in height and width amongst samples of the

same signature, Gosh [28] scaled the images of all the signature samples to a fixed

128×128-pixel size. Then, the signature samples of the same person that are skewed

and not horizontally aligned have been corrected by bringing them into horizontal

orientation.

1.1.2.3 Feature Extraction

In general, there are two ways to extract the features obtained during the feature

extraction phase: the first is by modifying feature extractors, and the second is by

using feature learning methods. Numerous types of research published to date employ,

examine and compare both techniques individually or together. From a different

perspective, the features obtained during the feature extraction step may be split
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into two groups: 1) Global Features, and 2) Local Features. Global features are

those features that are obtained from the complete signature, such as length, height,

aspect ratio, etc. Local features are those that can be extracted from each grid

of the signature image. Cartesian and log-polar grids were utilized by Yılmaz and

Yanıkoğlu [21] to extract characteristics from local zones. By combining the features

of the Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Scale

Invariant Feature Transform Descriptors (SIFT) in accordance with their success rates,

they are obtained for the classification step. Convolutional Neural Networks were

used by Hafemann et al. [24] to propose writer-independent feature extraction from

signature images, which is intended to capture visual cues that discriminate between

genuine signatures and forgeries, independent of the signer. Dey et al. [32] presented

SigNet, a Siamese network that uses the Convolutional Siamese Network learning

method to directly determine the characteristics to be utilized for classification from

signature images, regardless of the signer. To get local features from significant areas

of the signature images, Okawa [25] suggested KAZE features based on the current

Fisher Vector (FV) encoding. The best feature selection algorithm makes use of the

local and global characteristics that Sharif et al. [27] extracted. Aspect ratio, signature

area, pure width, pure height, and normalized signature height are considered global

characteristics in their study. Signature centroid, slope, angle, and distance are local

characteristics. In order to obtain relevant characteristics for the best feature selection

component, they used a genetic algorithm. The curvelet transform is used in the study

of Guerbai et al. [20] to generate characteristics of the handwritten signatures. Their

method takes advantage of the energy of the curvelet coefficient obtained from the

whole image of the handwritten signature. To generate curvelet coefficients, they

applied the curvelet transform on the signature image at different scales and different

orientations, using the wrapping technique. Energy E of the curvelet coefficients is

calculated as below:

E(l, r) =
∑

i

∑

j

|Cl,r(i, j)| (1.7)

where Cl,r is the curvelet coefficient computed at the scale l and the orientation r.

Ooi et al. [23] used the discrete radon transform (DRT) to extract features and

principal component analysis (PCA) to reduce the dimensions. An efficient feature

extraction method based on under-sampled bitmaps and LBP-based features was

introduced by Alaei et al. [26]. Then, they retrieved LBP-based characteristics from

the resulting under-sampled bitmap image. Twenty-two Gray Level Co-occurrences

Matrix (GLCM) and eight geometric features were generated by Batool et al. [35], and

they were merged using a method based on a high priority index feature (HPFI). They

presented skewness-kurtosis controlled PCA (SKcPCA) to choose the best features

for final categorization into forged and genuine signatures. Four structural and

15



direction-oriented features, including change of trajectory direction, trajectory slope,

trajectory waviness, and center of mass, have been retrieved in differing quantities

from each signature sample in the research Gosh [28] presented.

1.1.2.4 Classification

A One-Class Support Vector Machine (OC-SVM) based classification design was

proposed by Guerbai et al. [20] using a writer-independent technique. To train the

model, they employed genuine signatures and random forgeries made from genuine

signatures from other participants. They evaluated the system using the CEDAR

dataset and found that employing 4, 8, and 12 genuine signatures for model training,

respectively, resulted in average error rates (AERs) of 8.70%, 7.83%, and 5.60%.

When employing 4, 8, and 12 genuine signatures for training, they obtained AERs for

the GPDS dataset of 16.92%, 15.95%, and 15.07%, respectively. Using 12 reference

signatures, Hafemann et al. [24] developed classifiers for each participant based on

writer-dependent Support Vector Machines (SVM). They used genuine signatures as

well as random forgeries made out of genuine signatures from other participants.

Both a linear formulation and the Radial Basis Function (RBF) kernel were used

to train the SVM. They conducted their studies using the GPDS-960 [18], MCYT-75

[29], CEDAR [17], and Brazilian PUC-PR datasets [30]. They obtained an EER

of 2.87% for the GPDS-160 dataset, 4.63% for the MCYT dataset, 2.01% for the

CEDAR dataset, and 1.72% for the Brazilian PUC-PR dataset. Sharif et al. [27]
adopted a writer-dependent SVM classifier, employing the GPDS Synthetic, CEDAR,

and MCYT datasets. On the CEDAR, MCYT, and GPDS Synthetic datasets using 5,

10, and 12 genuine signatures. They attained minimal average error rates of 4.17%,

5.0%, and 5.42%, respectively. Yılmaz & Yanıkoğlu [21] used 5 or 12 reference

signatures to perform writer-dependent and writer-independent SVM classifiers, and

they trained both types of classifiers with RBF kernel. The combined performance

of all classifiers has a state-of-the-art EER of 6.97%. They employed only genuine

signatures in the model training phase of their suggested system in order to make

their applications more realistic and relevant. Writer-independent offline signature

verification using deep metric learning was proposed by Rantzsch et al. [36].
They used GPDS Synthetic, a portion of the Dutch Offline Signatures, and Japanese

Offline Signatures datasets from the ICDAR SigWiComp2013 contest [37] for model

training and assessment. It is claimed that the system outperforms the state-of-the-art

for offline signature verification from the ICDAR SigWiComp 2013 competition.

Based on a Siamese Neural Network architecture, Ruiz et al. [34] introduced a

writer-independent signature verification system against random forgeries that can

be applied to new participants without the need for extra training. Two kinds of
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synthetic signatures, augmented signatures, genuine signatures, and combinations

of all, were independently used to train the model. Better results were obtained

using synthetic signatures than other datasets. However, combining all types of

samples achieved the best results. Their method was evaluated on the GPDS Synthetic,

MCYT, SigComp11 [38], and CEDAR datasets, and EER results of 6.51%, 3.93%,

and 4.84%, respectively, were obtained. Long-Short Term Memory (LSTM) and

Bidirectional Long–Short Term Memory (BLSTM), two specialized Recurrent Neural

Network (RNN) classifier models, have been employed by Gosh [28] in their study on

the verification of handwritten signatures. He also compared the system he developed

using a CNN-based classification approach to an RNN-based classification approach,

both of which are writer-dependent. The efficiency of the system was evaluated using

six popular public signature databases. He claims that his experimental findings show

that the proposed RNN-based signature verification system surpasses the CNN-based

system and the current state-of-the-art results.

1.2 Objective of the Thesis

The objective of the thesis is to examine whether the friction sound between pen and

paper, which occurs during the signing, has a biometric value or not for verification. It

was also aimed to investigate the success rate of biometric verification of the signature

sound alone and to determine whether the signature sounds increase the verification

success when evaluated together (Fusion) with the corresponding signature images.

In addition, it aimed to reveal the effect of the difference between the pen-paper and

sound recorders (Mobile phones) on the verification success.

1.3 Hypothesis

The hypothesis of this thesis: "The sound caused by pen-paper friction during signing

has a biometric value for verification, and when these signature sounds are fused with

corresponding signature images, they verify with a higher success than the verification

success with signature images only or sounds only."

1.4 Contribution

Our main contribution is the comprehensive consideration of the friction-induced

sound between the pen and paper surface during the signing procedure. The factors

contributing to the success of this system are listed below.

1) A new approach is proposed, which performs handwritten signature verification
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with a very high degree of success, only taking into account the sound emanating

from the friction between the pen and paper during the signing (signature sound).

2) Another approach is proposed, using a fusion of the signature sound and image

to verify the signature. This method has a higher success rate than both signature

verification using only signature image data and signature verification using only

signature sound data. Statistical significance tests are used to validate these results.

3) A data set consisting of signature sounds and signature images from 93 participants

is built from the ground up. This dataset contains a total of 2976 signature images

and 5952 signature sounds, with 16 genuine signature images, 16 forged signature

images, 32 genuine signature sounds, and 32 forged signature sounds per participant.

Each participant is required to sign using two distinct types of paper and two distinct

types of pens. For each paper-pencil combination, four samples are collected. The

sound arising from each signature is recorded using the built-in microphones of two

different phone models. The signers’ ages ranged from 19 to 64, with 55 male and 38

female participants.

4) By analyzing the cases where the pen-paper-phone combinations of the reference

and query signatures are different, it has been determined to what extent the

differences in the paper, pen, and phone items affect the verification success.

5) A novel approach to feature extraction is provided, wherein sound-based features

are extracted and transformed into images, and feature extraction is carried out using

image processing techniques on the image. In the deep learning-based approach

(Chapter 7) proposed in this study, the SigNet model [24] trained with only static

signature images is used for the first time for feature extraction from sound-based

data.

6) Two different signature verification approaches are proposed, in which feature

extraction is carried out with deep and non-deep (shallow [39]) learning-based

methodologies. These two approaches are compared in terms of their benefits and

drawbacks.

1.5 Outline

Chapter 2: The methodology used to build the dataset, the total number of

participants, the total number of samples collected, and the tools used to collect

the samples—pen, paper, and sound recording equipment—are all described in this

chapter.

18



Chapter 3: The operations performed in the preprocessing step for both signature

sound data and signature image data are explained in detail.

Chapter 4: In this chapter, the processes performed for feature extraction are

explained. Feature extraction is performed separately on the signature sound and

the signature image.

Chapter 5: Detailed information is given on the classification methodology. Block

diagrams, including classification phases of proposed approaches, are illustrated.

Chapter 6: In this chapter, the shallow learning-based approach is explained. Tables

and graphs demonstrating the test results are provided.

Chapter 7: The deep learning-based proposed approach is explained. The tables

and graphs providing test results are given. Comparative test results for the deep

learning-based approach and the shallow learning-based approach are included in

this chapter.

Chapter 8: The conclusions, summary, and recommendations for further research are

discussed in this chapter.
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2
DATA EXTRACTION

Offline signature datasets like GPDS [18], CEDAR [17], MCYT [29], and others that

are publicly available to researchers lack the sound signal data that is specifically

required for this study. As a result, a new dataset is built that includes sound signal

data of the signing process as well as static images of the signatures like in the

aforementioned public offline signature datasets. An illustration of the experimental

setup is shown in Figure 2.1.

Figure 2.1 Two mobile phones are displayed in an experimental setup with a BIC
Cristal ballpoint pen and thin paper with the auto-copy feature (To the right is a

rollerball fine-point pen)

Additionally, the dataset of static signature images produced in this research and

two public datasets (GPDS and MCYT) are compared using the proposed approach

independently, and as a result, the coherence of the dataset built in this study is

determined as provided in the following chapters (Chapters 6-7, Tables 6.1-7.2).
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2.1 Pen Types

The types of pens used in the signing procedure are decided considering the most

common usage. Additionally, taking into account that variations in pen nib thickness

also change the noises made throughout the signing procedure, it is assumed that if

pen nibs vary in thickness, verification would be more challenging. Thus, we subject

our system to a more stringent test. The most widely used pens in the world, the

BIC 1mm Cristal disposable ballpoint pen [40] and the BIC 0.5mm Extra Fine Point

Rollerball Pen, are both selected. Figures 2.2 and 2.3 provide images of the selected

pen types.

Figure 2.2 BIC 0.5mm extra fine point rollerball pen

Figure 2.3 BIC 1mm Cristal disposable ballpoint pen
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2.2 Paper Types

It is aimed to choose the most frequently used paper types as well. There are two types

of paper used in the study, A4 plain paper (80 g/m2 - 24 lb, size:210x297mm) and

A5 thin paper with an auto-copy feature (55 g/m2 - 15 lb, size:210x148mm). Figures

2.4 and 2.5 provide representations of the selected paper types.

Figure 2.4 Scanned A4 plain paper (80 g/m2 - 24 lb.)
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Figure 2.5 Scanned A5 thin paper with auto copy feature (55 g/m2 - 15 lb.)

The participant’s name and surname, email address, phone number, date, gender,

the kind of pen they use, and the ID numbers of the audio files that are acquired

after recording are all indicated in the fields on the sheets (Due to privacy concerns,

some of the data is not displayed for the samples in Figures 2.4-2.5.). There is not

a section for paper types, though, because these can be determined on the papers

themselves. There is a section for the name and last name of the person the participant

is impersonating if they sign the skilled forgery of another participant. The participant

leaves this area empty if he/she gives his/her genuine signature.

2.3 Phone Models

When building the dataset, it is crucial to keep in mind that the dataset should be

interesting for research, useful for real-world applications, and cover as much usage

area as possible. Two of the mobile phone models’ internal microphones are used to

record the sound signals that occur throughout the signing procedure. Android and

iOS, the iPhone 7 Plus, and the Samsung Galaxy Note 3 were selected as the two

mobile devices to compare, due to their broad use throughout the globe [41] and the

fact that they support the two most popular mobile operating systems. The sound

recording software utilized in the study is the built-in sound recorder for both mobile

devices. The internal microphones of the phones are combined in the data collection

setup so that the distance between the two microphones and the signature is aimed
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to be equal (Figure 2.1).

2.4 Data Collection Procedure

One participant is required to sign four times (Since two paper types and two pen

types are used, there are a total of four combinations) for each combination of pen

and paper. The sound recording applications on both phone models are launched

and begin recording the sound before the first signature is given. The recording lasts

up to the conclusion of the fourth signature. As a result, each phone has one sound

file that contains the sounds of four different signatures. As shown in Figures 2.4

and 2.5, there are additional fields on the signed paper where you can write the ID

numbers of these sound files independently for each phone. 93 participants (55 male,

38 female) have provided signature samples, each of which includes four genuine

signatures on plain paper with a rollerball pen, four genuine signatures on plain paper

with a ballpoint pen, four genuine signatures on thin paper with a rollerball pen, and

four genuine signatures on thin paper with a ballpoint pen. So, using a combination

of two different pen types and two different paper types, a participant provides 16

genuine signatures. Due to the simultaneous recording of the sounds of these 16

genuine signatures by two phones, a total of 32 signature audio files—16 on each

phone—are produced. 16 skilled forgeries and a total of 32 audio files associated

with these forgeries are likewise gathered from one participant in the same manner

and using the same combinations. In summary, each participant provides 16 genuine

signature images, 16 skilled forgery images, 32 genuine signature audio files, and 32

skilled forgery audio files to build a signature data set of 93 participants (See Table

2.1). Before receiving the skilled forgeries, the person who supplies them is shown the

name and signature of another participant to copy, and he/she is also allowed to do

practice trials at least five times until they indicated they are ready. Thus, he/she could

produce a signature that is close to the one they are trying to replicate; these forgeries

are known as skilled forgeries. The forger does not watch how the signature to be

forged is signed. If he/she had watched, it would be a great advantage in imitating

the signature image but not as much of an advantage in imitating the signature sound.

Because the sound is more abstract than the image, it is more difficult to remember and

make the same sounds with a pen. In the usual workplace setting, there is an average

noise level of 40 dB while the sounds of the signatures are being recorded. Participants

are not instructed to sign with a louder or more pronounced motion. They are asked

to sign just in a usual way. There is not any validation process in place for factors like

signature length, volume, etc. Small (size) and quiet (with no distinguishable audio

data) signatures from certain participants are accepted, and all of them are added to

the dataset. The dataset is called SKU to make it easier to present in tables and results.
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Table 2.1 Summary of dataset collected (SKU) from 93 participants (Age range is
between 19 and 64).

#Participants Pen Type Paper Type Phone Type #samples

93 [55 male, 38 female] Ballpoint Pen Plain Paper Samsung Galaxy Note 3 4 genuine signature, 4 skilled forgery

93 [55 male, 38 female] Rollerball Pen Plain Paper Samsung Galaxy Note 3 4 genuine signature, 4 skilled forgery

93 [55 male, 38 female] Ballpoint Pen Thin Paper Samsung Galaxy Note 3 4 genuine signature, 4 skilled forgery

93 [55 male, 38 female] Rollerball Pen Thin Paper Samsung Galaxy Note 3 4 genuine signature, 4 skilled forgery

93 [55 male, 38 female] Ballpoint Pen Plain Paper iPhone 7 Plus 4 genuine signature, 4 skilled forgery

93 [55 male, 38 female] Rollerball Pen Plain Paper iPhone 7 Plus 4 genuine signature, 4 skilled forgery

93 [55 male, 38 female] Ballpoint Pen Thin Paper iPhone 7 Plus 4 genuine signature, 4 skilled forgery

93 [55 male, 38 female] Rollerball Pen Thin Paper iPhone 7 Plus 4 genuine signature, 4 skilled forgery
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3
PREPROCESSING

In data processing, the preprocessing stage is crucial. Due to its direct impact on the

feature extraction and classification phases, even the smallest improvement achieved

at this step can result in substantial gains in verification performance. Processes

performed with sound signal data and processes performed with signature images

progress independently up to a point because of the nature of data collection phase in

this study. In conclusion, there are two basic categories under which the preprocessing

step is evaluated: 1) Sound data preprocessing, and 2) Image data preprocessing.

3.1 Signature Sound Data Preprocessing

The preprocessing of the signature sound is done in 2 stages. The first stage

is audio-based preprocessing (Section 3.1.1), and the second is image-based

preprocessing (Section 3.1.2). In the first stage, the audio signal data is preprocessed

(i.e., segmentation, down-scaling, etc.). The preprocessed audio signal from the first

stage is sent to the audio-based feature extraction phase in Chapter 4, Section 4.1. The

output of this phase is two feature vectors, SFOSE and SC. These vectors are returned

to the second stage, the Image-based sound data preprocessing (Section 3.1.2). Figure

3.1 shows the flowchart for preprocessing procedure of the signature sound.

3.1.1 Audio-based sound data preprocessing

Each participant had to provide at least four genuine signatures and four forgeries,

as was specified in Chapter 2, according to each combination of pen and paper.

Each mobile phone produces a sound signal that includes the sounds of these four

signatures. Each signature sound’s beginning and ending positions are identified. The

Audacity tool [42] is used to segment each of those sound signals manually. To more

easily distinguish the start and end points of the signature sound, the audio signal is

segmented through the spectrogram view provided by this program. As a result, each

sound file in the mobile phones is split into four independent signature sound files,
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and the parts that did not include the dynamic data of the signing process are deleted.

Sound files for signatures are converted from "m4a" to "wav" file formats. It is noticed

that the energy density between 0 Hz and 22050 Hz offers adequate information about

the signal, so the sampling rate is decreased to 22050 Hz to reduce the cost of data

processing and make the utilized algorithms perform better.

Figure 3.1 Signature Sound Data Preprocessing
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3.1.2 Image-based sound data preprocessing

Following audio-based preprocessing, the raw audio signal data corresponding to a

participant’s static handwritten signature (Figure 3.2) is illustrated in Figure 3.3. The

preprocessed audio signal is sent to the feature extraction stage (Section 4.1) to obtain

feature vectors. These feature vectors are normalized (min-max) to reduce the impact

of different pen-paper-phone combinations on verification success. Then, the plotted

graphics of the feature vectors obtained in the feature extraction stage are converted

into images and sent back to the preprocessing phase again. This time, an image-based

preprocessing procedure is applied to these incoming image files; Axis lines and other

axis-related information are removed (See Figure 3.4), the graphic image data of audio

signals is scaled down by 50%, and it is transformed to gray-scale. The retrieved

images are tagged with the sequence number, writer aliases, pen, and paper types,

and signature class type (genuine or forgery).

Figure 3.2 Handwritten signature

Figure 3.3 Handwritten signature of a participant as raw sound signal data
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Figure 3.4 Image graphs of the audio signal’s onset strength envelope and spectral
centroid produced from the signature: a) Image of original spectral-flux onset
strength envelope graph b) Image of preprocessed spectral-flux onset strength

envelope graph c) Image of original spectral centroid graph d) Image of
preprocessed spectral centroid graph
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3.2 Signature Image Data Preprocessing

Each paper in the dataset holding image data of the static handwritten signatures is

scanned at a resolution of 600 dpi in 24-bit color. An algorithm used to extract the

individual images detects signature-containing rectangles and crops each signature to

fit within these rectangles. Each cropped signature is named by the signer’s aliases,

the type of pen, the type of paper, the class of the signature (genuine or forgery), and

the sequence number. The size of the image files is decreased by 50%. The images are

converted to grayscale. For the shallow learning-based approach (Chapter 6): erosion

and opening morphological procedures are performed to complete the gaps in the

signature lines to increase the efficiency of the processes that would be carried out in

the subsequent phases. Noise is reduced using Gaussian blur, and background noises

and colors are eliminated using OTSU’s thresholding algorithm [31]. The negative of

the signature is produced by deducting each pixel from the image’s maximum intensity

value of 255. Images are then centered on a canvas. To sharpen signatures, a closing

morphological operation is used. Once again, the image size is reduced. The center

of the signature image is cropped to contain the signature. Finally, a non-local means

denoising algorithm [43] is employed to eliminate noises. (see Fig. 3.5). For the deep

learning-based approach (Chapter 7): only the inversion is applied to the signature

images.

Figure 3.5 Preprocessing phases for static handwritten signature a) Original image
b) Grayscale image c) Preprocessed image d) Inverted image
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4
FEATURE EXTRACTION

The elements of the feature vectors acquired in this step are extracted using one of two

methods in general: either hand-crafted feature extractors or deep feature learning

algorithms. The implementer explicitly specifies features in the first case. The second

case is an automated feature detection process that uses a deep learning algorithm to

find the most useful features for classifying. The drawback of this deep learning-based

feature extraction approach is that the implementer finds it very challenging to

recognize, comprehend, or fine-tune these features on a human level. Despite this

drawback, the detection of features using the deep learning-based approach is better

at enhancing the classification’s success. This study performs feature extraction by

comparing both cases individually.

There are two distinct data types of a signature since the participant-provided

signature data includes both audio signals and signature images. Distinct feature

extraction strategies were used for these two different types of data, accordingly. The

feature extraction procedures for both types of data are analyzed in the following

sections.

4.1 Feature Extraction for Audio Data

Varying noises with different timbres are exposed throughout the signing process by

utilizing various types of pens, papers, and mobile phones. Despite having distinct

timbres, it is observed that when the sound signals of signatures are made by the

same individual using various pen and paper combinations, they exhibit similar notary

alterations. Spectral flux onset envelope curves are very convenient for comparing

audio signals with different amplitude values because these curves stand similarly

even if the amplitude values are different. So spectral flux onset envelope of signals

provides an advantage in comparing audio signals with different amplitude values

(timbres) obtained from different paper-pencil-phone combinations. The rate of the

positive changes in the consecutive power spectrums of a signal over time is measured
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by the concept of spectral flux. It is mathematically expressed as:

SF(n) =
i= N

2
∑

i=1

H(|X (n, i)| − |X (n− 1, i)|) (4.1)

where H(x) = x+|x |
2 is half-wave rectifier function, n is frame number, N is window

size, i is frequency bin index and X (n, i) is the ith frequency bin of the nth frame.

X (n, i) is regarded as the short-time Fourier transform (STFT) of the signal x(n). It is

expressed as:

X (n, i) =

N
2 −1
∑

m=− N
2

x(hn+m)w(m)e−
2i jmπ

N
(4.2)

where w(m) is a Hamming window, N is window size and h is hop size.

The process known as onset detection [44] is used to find the beginnings of all events

connected to significant changes in an audio signal. The phrase "Detection Function"

has also been used in studies published to date to refer to the Onset Strength Signal

(OSS). A signal’s envelope is the line that encircles it from the outside to encompass

its oscillations. Another feature of a signature sound adopted for this study is the

spectral centroid graph of the audio data. The spectral centroid—which reveals where

the average of the spectrum weighted by amplitude is located—can be computed with

the use of the Fast Fourier Transform (FFT). It may be formulated as:

SC =

i=N
∑

i=0
iwAi

i=N
∑

i=0
Ai

(4.3)

where w is the width of each spectral bin in Hz and A is the amplitude. Figures

4.1-4.2-4.3 illustrate the steps of a sound signal during the feature extraction phase.

Figure 4.1 Raw signal
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Figure 4.2 Onset strength envelop of signal

Figure 4.3 Spectral centroid of signal

4.2 Feature Extraction for Image Data

There are two types of images for feature extraction in this study. So, feature vectors

are taken from both handwritten signature images and graphic images of signature

sounds. The improved performance in the classification step is due to the combination

of the feature vectors acquired from these two types of images.

The representations used in modern deep learning systems generally consist of tens

or even hundreds of consecutive layers, and they are all automatically learned by

exposure to training data. Other machine learning techniques, on the other hand,

frequently concentrate on learning just one or two layers of data representations; as a

result, they are also referred to as "Shallow Learning" techniques [39]. In this research,

two separate approaches are proposed comparatively by performing feature extraction

with two different methods, shallow (non-deep) learning-based feature extraction,

and deep learning-based feature extraction.
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4.2.1 Shallow (non-deep) learning-based feature extraction

At this level, Scale Invariant Feature Transform (SIFT) [45] and Local Binary Pattern

(LBP) [46] algorithms were applied to each image, resulting in descriptors converted

to histogram arrays and accepted as distinct feature vectors. The LBP feature

extraction approach for gray-level independent image representation determines how

closely related each pixel is to its neighbors. Applying the LBP operator to the image

is simple and efficient. The operator’s sole role is to evaluate each neighbor point in

the radius distance using the specified radius parameter and compare it to the chosen

center point on the image. A binary code is produced for each pixel in the image by

thresholding the surrounding pixels in relation to the central pixel using an operator.

LBP can be formulated as:

LBP(x i, yi) =
n−1
∑

n=0

s(gn − gi)2
n (4.4)

s(gn − gi)

(

1, (gn − gi)≥ 0

0, (gn − gi)≤ 0
(4.5)

where (x i, yi) is the center point, and n is the number of points in the radius distance.

gi is the gray value of the ith center point and gn is the gray value of the nth neighboring

pixel.

Example operators for various radius values and point counts are represented

graphically in Figure 4.4. Interpolation is used to approximate the gray values of

the circle’s points that do not precisely match the pixel points.

Figure 4.4 Operators for different radius values and point counts: a) Radius=1,
Number of points=8. b) Radius=2, Number of points=8. c) Radius=2, Number of

points=16.

The number of points is determined to be eight, and the radius is determined to be 2 in

the proposed method. Depending on the size of each image file, a m× n dimensional

matrix including LBP features is produced. The histogram vector of each LBP feature
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matrix is computed. The histogram vector’s size becomes 28 = 256 since the number

of points is adjusted to 8.

The SIFT algorithm, which finds and identifies regional features of an image that do

not change with rotation and/or scaling, is used to construct the other feature vector. It

is a systematic algorithm that is mostly composed of four parts; 1) Scale-space extrema

detection: Identifying potential locations for features. 2) Keypoint localization:

Accurately detecting the feature key points. 3) Orientation Assignment: This involves

assigning directions to key points. 4) Keypoint Descriptor: A high-dimensional vector

for identifying the key points. The perceptual hash of the image and a few contour

features are also retrieved from each image file. These features, with the LBP and

SIFT features, are included in the feature vectors. The aspect ratio of the image,

the ratio of the contour area, the area of the bounding rectangle, and the ratio of

the convex hull area to the bounding rectangle area are examples of these contour

features. As previously stated, since the representation of the signature sound is an

image file similar to that of a signature image, two-dimensional feature vectors (LBP

and SIFT) are derived independently from both the sound of a signature and signature

image. The size of these vectors is increased to 1 × 260 by including perceptual

hashes of the images and other contour features. Two 260-dimensional feature vectors

(LBP and SIFT) obtained from the sound of the signature, and two 260-dimensional

feature vectors (LBP and SIFT) obtained from the signature image are sent to the

classification phase for each signature in the dataset to combine the features obtained

from these two types of data. The LBP and SIFT algorithms are used to accomplish

writer-independent feature extraction in the shallow learning-based strategy outlined

in Chapter 6.

4.2.2 Deep learning-based feature extraction

Deep learning algorithms, a subset of machine learning algorithms, are first

popularised in 2006 [47]. Deep learning models have more complex hierarchical

architectures than traditional data analytics. It has many hidden layers, so input data

is modified numerous times before being utilized to generate the desired output. It

also investigated whether deep learning-based features could successfully be used for

the proposed verification system. Large amounts of data are necessary for the success

of deep learning algorithms. The system is trained using this big data, which requires

time, and decides which features to extract. Model output is generally produced in the

initial training using programming tools to be used in the later stages. This approach

saves time by avoiding repeating training for subsequent classifications. The size of

the data set provided for this study is not sufficient to reach an efficient result by
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training with deep learning and producing a model. So, using pre-trained models

based on deep convolutional neural networks (CNN) [48] like SigNet [24] (It was

produced using solely signature data.), ResNet [49], VGG-16 [50], and VGG-19 [50],
feature extraction is carried out. Among these models, SigNet [24] is included in

the proposed approach because it yields the most successful results (see Table 7.1 in

Chapter 7) in terms of time and accuracy. The founders [24] of the SigNet model

wanted to make their model learn features with a writer-independent approach by

training the network with a non-supervised method. Being writer-independent has the

benefit of being more suitable for applications in the real world because the network

doesn’t need to be retrained for learning features when a new participant is added to

the system.

Figure 4.5 One of the architectures employed in SigNet [24], A series of
transformations using convolutional layers, max-pooling layers, and fully-connected

layers are applied to the input image.

Table 4.1 CNN Layers [24]

Layer Size Other Parameters

Input 1 × 150 × 220

Convolution (C1) 96 × 11 × 11 Stride = 4, pad=0

Pooling 96 × 3 × 3 Stride = 2

Convolution (C2) 256 × 5 × 5 Stride = 1, pad=2

Pooling 256 × 3 × 3 Stride = 2

Convolution (C3) 384 × 3 × 3 Stride = 1, pad=1

Convolution (C4) 384 × 3 × 3 Stride = 1, pad=1

Convolution (C5) 256 × 3 × 3 Stride = 1, pad=1

Pooling 256 × 3 × 3 Stride = 2

Fully Connected (FC6) 2048

Fully Connected (FC7) 2048

Fully Connected + Softmax M (#Users)

Fully Connected + Sigmoid 1

The input image is transformed using convolutional layers, max-pooling layers, and

fully-connected layers in a series of steps. M units with a softmax activation, where M
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is the total number of users in the data set, make up the neural network’s final layer.

Their proposed CNN architecture for M=531 users is shown in Figure 4.5. Layers are

also described in Table 4.1. In the deep learning-based approach explained in Chapter

7, feature extraction was performed with the SigNet model.
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5
CLASSIFICATION

Table 1.2 in Chapter 1 makes clear that the Support Vector Machines (SVM) technique

is frequently employed for cutting-edge signature verification research. Based

on statistical learning theory, SVM is a controlled classification method that was

developed by V. Vapnik et al. [51]. It essentially uses a line to split data into two

classes most effectively. This line is intended to be as close to both classes’ extreme

points and vectors as possible. Decision boundaries (hyperplanes) are established for

this purpose as illustrated in Figure 5.1.

Figure 5.1 Separation of two different classes by hyper planes

The two types of SVM that are most frequently employed are Linear SVM and

Non-linear SVM. A single straight line can be used to divide a dataset into two classes

when the data is linearly separable. When a dataset cannot be categorized with a

straight line, or if the features in the dataset are not distributed linearly, the non-linear

SVM algorithm is utilized. It is chosen to classify only genuine signatures in this

study so that it would be appropriate for real-life applications. To accomplish this

objective, only genuine signatures are utilized in the training phase of the One-Class
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SVM classification method, which is another variation of SVM. One Class Classification

(OCC) uses single-class samples during training to distinguish between samples of

one specific class. One-Class SVM classifies incoming data as being similar to or

distinct from the samples used in training by employing a hypersphere rather than a

hyperplane to divide two classes of instances. There is a competition to train classifiers

with as few samples as possible and solely with genuine signatures (one class) to make

signature verification acceptable for real-life applications in the studies published to

date. In this aspect, OC-SVM is quite effective.

Figure 5.2 Block diagram of the proposed shallow learning-based approach for
multimodal signature verification (sound and image)
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Figure 5.3 Block diagram of the proposed deep learning-based approach for
multimodal signature verification (sound and image)

Figure 5.2 displays the block diagram for the proposed shallow learning-based

approach (Chapter 6), and Figure 5.3 illustrates the block diagram for the proposed

deep learning-based approach (Chapter 7). Both of them incorporate the classification

phase.

For feature fusion based on audio data, feature vectors (LBP and SIFT for shallow
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learning-based, SigNet for deep learning-based approach) extracted from each of the

audio-based Spectral Flux Onset Strength Envelope (SFOSE) and Spectral Centroid

(SC) images are combined to generate united feature vectors by eliminating the

mean and scaling to unit variance feature vectors are standardized. For image-based

signature verification, feature vectors (LBP and SIFT for shallow learning-based,

SigNet for deep learning-based approach) are extracted only from the static image

of the signature instead of SFOSE and SC graphical images. When audio and

image data are fused to increase the verification accuracy, feature vectors from the

audio data and feature vectors from the signature image data are combined. These

vectors are employed independently in the OC-SVM classifier utilizing leave-one-out

cross-validation. Four genuine signatures are used for training, and four forged

signatures are used for testing. In the testing, each of the four forged signatures, and

each left-out genuine signature during the leave-one-out cross-validation procedures,

are sequentially utilized together. Since the shallow learning-based approach performs

two feature extraction algorithms (LBP, SIFT), two distinct classification scores are

calculated and normalized between 0 and 1 using min-max normalization. These

scores are averaged (score-level fusion) in order to improve verification performance

and get the final score. Since there is only one feature extraction algorithm (SigNet)

in the deep learning-based approach, score-level fusion has not been performed. Only

feature vectors extracted from SFOSE and SC images or static signature images are

combined for verification.

In the following two chapters, shallow and deep learning-based approaches are

detailed comparatively by providing experimental test results with tables and

graphical illustrations.
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6
SHALLOW (NON-DEEP) LEARNING BASED APPROACH

The audio data’s extracted features (see Section 4.1) are transformed into graphics,

which are then turned into an image file. The audio-derived image files and the

signature images are both subjected to the use of LBP and SIFT feature extraction

(see Section 4.2.1) methods.

To verify a signature using just audio data, two image files Spectral Flux Onset

Strength Envelope of Signal (SFOSE) and Spectral Centroid (SC) of Signal are

extracted from the audio data of the signature. From each of these images, two

feature vectors (LBP and SIFT) are produced. 1×256-dimensional LBP and SIFT

feature vectors are combined with 1x4 dimensional contour feature vectors to become

1×260-dimensional feature vectors. For feature fusion based on audio data, 1×260

size LBP+Contour feature vectors extracted from both audio-based images (SFOSE,

SC) are combined to generate a 1×520 dimensional LBP+Contour feature vector,

and 1×260 size SIFT+Contour feature vectors extracted from both audio-based

images (SFOSE, SC) are combined to form a 1×520-dimensional SIFT+Contour

feature vector. By eliminating the mean and scaling to unit variance, feature vectors

are standardized. These two 1×520 size vectors are employed independently in

the OC-SVM classifier (Chapter 5). For each vector, distinct classification scores

are computed, and these values are normalized between 0 and 1 using min-max

normalization. The average of two scores resulting from the classifier is calculated,

indicating whether the signature represented by each vector is genuine or a forgery,

according to a threshold value.

For verification using only the static signature image, a 1×260 LBP+Contour feature

vector and a 1×260 SIFT+Contour feature vector are obtained for each signature

sample. These vectors are used for training the classifier after the standard scaling

step. Two scores corresponding to each vector (LBP, SIFT) resulting from testing the

OC-SVM classifier are averaged after being subjected to the min-max normalization

process, as previously mentioned. It is decided whether the tested signature is genuine

or forgery based on whether the average score exceeds the threshold value.
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Figure 6.1 Flowchart for the proposed methodology of sound and multimodal
signature verification
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When audio and image data are fused to increase the verification success, two

(SFOSE and SC) 1×260 size LBP+Contour feature vectors from the audio data and

one 1×260 size LBP+Contour feature vector from the image data are combined to

form 1×780-dimensional LBP+Contour feature vector. Likewise, two (SFOSE and

SC) 1×260 SIFT+Contour feature vectors from the audio data and a 1×260 size

SIFT+Contour feature vector from the image data are combined to generate a 1×780

size SIFT+ Contour feature vector. After the standard scaling phase, these vectors are

utilized for training the OC-SVM classifier. Before the previously indicated min-max

normalization procedure, two scores for each vector (LBP, SIFT) obtained from testing

the classifier are averaged. Whether the average score surpasses the threshold value

determines if the examined signature is genuine or a forgery. As a result, the fusion

of a signature sound and an associated signature image has been achieved, increasing

the success of classification.

Four genuine signatures are utilized for training by employing leave-one-out

cross-validation, and four forgeries are used for testing. In the testing, each of

the four forgeries, and each left-out genuine signature during the leave-one-out

cross-validation procedures, are sequentially utilized together. Figure 6.1 shows the

flowchart for the proposed shallow learning-based approach.

6.1 Test Results

For 93 participants consisting of 55 male and 38 female participants in the age range

19 to 64, the values of the False Acceptance Rate (FAR), Genuine Acceptance Rate

(GAR), False Reject Rate (FRR), and Equal Error Rate (EER) are determined. The

value at which the FRR and FAR values are equal is recognized as the EER. When the

FRR and FAR values are not even, the closest FRR and FAR values are chosen, and

the EER is computed across these values using linear interpolation. The verification

outcomes are based on combinations of pen-paper types and phone models. For the

convenience of presentation, the dataset developed for this study is given the name

SKU (See Chapter 2).

6.1.1 Results of the Tests Using Only Static Offline Signature Image Data

The proposed method is applied to the static signature images in the GPDS-100 [18]
and MCYT-75 [29] public offline signature datasets as well as the static signature

images in the dataset collected from scratch (SKU) to get an idea about the reliability

of the static signature image data collected within the context of this study. Table 6.1

presents results.
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Table 6.1 Application of the proposed methodology to offline signature images in the
dataset built from scratch (SKU) and to publicly available offline signature datasets

(MCYT, GPDS).

Data Set #Participants #Samples Results

MCYT-75 [29] 75 4 EER: 11.11%

GPDS-100 [18] 100 4 EER: 9.67%

SKU (ballpoint pen and plain paper) 93 4 EER: 11.47%

SKU (rollerball pen and plain paper) 93 4 EER: 11.29%

SKU (ballpoint pen and thin paper) 93 4 EER: 5.02%

SKU (rollerball pen and thin paper) 93 4 EER: 10.22%

Tables 6.2 and 6.3 present the results from the proposed method and a few

state-of-the-art studies when they were applied to publicly available offline (static)

signature datasets (MCYT, GPDS). In paper [52], which offers a comprehensive

overview of recent works on offline signature verification, several kinds of research

are discussed in detail.
Table 6.2 Based on the MCYT-75 dataset, a comparison between the proposed

approach and some of the state-of-the-art publications.

Study Feature Extraction Classification #Samples Results

Masoudnia et al. [53] CNN SVM 10 EER: 5.85%

Ooi et al. [23] DRT with PCA PNN 5 EER: 9.87%

Zois et al. [54] Poset Grid Features SVM 5 EER: 6.02%

Maergner et al. [55] Keypoint Graphs GED, Bipartite 10 EER: 12.01%

Hafemann et al. [24] CNN(SigNet) SVM 10 EER: 2.87%

Proposed method for only signature image LBP and SIFT OC-SVM 4 EER: 11.11%

Table 6.3 Based on the GPDS dataset, a comparison between the proposed approach
and some of the state-of-the-art publications.

Study Feature Extraction Classification #Samples Results

Hafemann et al. [56] CNN SVM 14 EER: 10.70%

Hafemann et al. [24] CNN(SigNet) SVM 5 EER: 2.41%

Xing et al.[57] Convolutional Siamese Cosine, Euclidean 54 EER: 10.37%

Narwade et al. [58] Pixel Matching Features SVM 12 EER:8.71%

Proposed method for only signature image LBP and SIFT OC-SVM 4 EER: 9.67%

Table 6.4 Equal error rate values for participants’ genders (Male (M), Female (F))
and ages (<30, ≥30) when using just static data (signature image).

Combination (SKU dataset)
Gender Age Results (Gender)(EER) Results (Age)(EER)

#M #F #(<30) #(≥30) M F <30 ≥30

Ballpoint Pen-Plain Paper 55 38 63 30 7.27% 16.84% 12.06% 10.00%

Rollerball Pen-Plain Paper 55 38 63 30 11.82% 9.47% 9.52% 12.38%

Ballpoint Pen-Thin Paper 55 38 63 30 7.88% 1.32% 6.35% 2.22%

Rollerball Pen-Thin Paper 55 38 63 30 10.65% 9.47% 11.64% 6.67%

Only the offline signature (static) data from the dataset is used to derive the EER

values of the verification successes, which are also computed specifically for gender

and age (See Table 6.4).
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Figure 6.2 shows Receiver Operating Characteristic (ROC) curve according to

averaged results obtained from all pen-paper combinations in Table 6.1 based only

on offline (static) signature data.

Figure 6.2 ROC curve for static offline signature verification according to averaged
error rates obtained from all pen-paper combinations.

6.1.2 Results of the Tests Using Only Dynamic Signature Sound Data

The features extracted from images of the Spectral Flux Onset Strength Envelope

(SFOSE) of the signature sound only, the features extracted from the Spectral Centroid

(SC) image of the signature sound only, and the combined feature vectors (combined

LBP+contour features and combined SIFT+contour features) extracted from these

images (SFOSE and SC) produced for enhancing accuracy, are used separately for

verification with audio data only. To make signature verification using sound data

alone, four genuine and four forged signature sound samples from 93 participants are

employed. The two image files (Image of SFOSE, Image of SC) are acquired from the

audio data, and each of these image files is converted into two feature vectors (LBP,

SIFT) separately (See Figure 6.1). OC-SVM is employed in the classification phase,

along with leave-one-out cross-validation. A score-level fusion is performed by taking

the average of the obtained scores resulting from LBP and SIFT features. Table 6.5

presents the findings.
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Table 6.5 Verification results for audio data alone (Number of participants: 93)

Combination (SKU dataset) Results (SFOSE [59]) Results (SC [60]) Results (SFOSE+SC)

Ballpoint Pen-Plain Paper-Galaxy Note 3 EER: 9.97% EER: 10.04% EER: 5.38%

Rollerball Pen-Plain Paper-Galaxy Note 3 EER: 1.61% EER: 13.69% EER: 1.08%

Ballpoint Pen-Thin Paper-Galaxy Note 3 EER: 5.38% EER: 14.97% EER: 4.30%

Rollerball Pen-Thin Paper-Galaxy Note 3 EER: 3.09% EER: 15.16% EER: 2.15%

Ballpoint Pen-Plain Paper-iPhone 7 Plus EER: 5.91% EER: 16.62% EER: 4.52%

Rollerball Pen-Plain Paper-iPhone 7 Plus EER: 2.15% EER: 9.95% EER: 1.79%

Ballpoint Pen-Thin Paper-iPhone 7 Plus EER: 6.45% EER: 9.14% EER: 3.87%

Rollerball Pen-Thin Paper-iPhone 7 Plus EER: 5.81% EER: 6.99% EER: 1.08%

According to gender and age, separate calculations are made for the Equal Error Rate

values of the verification successes that resulted from the audio data. According to

gender, EER values for verification using only audio data are shown in Table 6.6. Table

6.7 lists the Equal Error Rate values for verification using audio data exclusively by

age ranges.

Table 6.6 Verification results for audio data alone according to gender (Number of
male (M) participants: 55, number of female (F) participants: 38).

Combination (SKU dataset)
Results (SFOSE)(EER) Results (SC)(EER) Results (SFOSE+SC)(EER)

M F M F M F

Ballpoint Pen-Plain Paper-Galaxy Note 3 8.73% 11.84% 8.36% 12.50% 3.38% 7.89%

Rollerball Pen-Plain Paper-Galaxy Note 3 0.91% 2.63% 10.65% 18.42% 0.00% 2.63%

Ballpoint Pen-Thin Paper-Galaxy Note 3 7.27% 2.63% 15.58% 11.84% 4.55% 3.95%

Rollerball Pen-Thin Paper-Galaxy Note 3 2.73% 3.95% 15.00% 13.16% 1.82% 2.63%

Ballpoint Pen-Plain Paper-iPhone 7 Plus 5.09% 7.89% 11.95% 23.68% 3.38% 5.26%

Rollerball Pen-Plain Paper-iPhone 7 Plus 1.82% 2.63% 8.83% 11.58% 1.82% 1.97%

Ballpoint Pen-Thin Paper-iPhone 7 Plus 4.24% 9.65% 12.73% 5.26% 6.06% 0.00%

Rollerball Pen-Thin Paper-iPhone 7 Plus 4.55% 7.89% 8.00% 4.93% 1.21% 2.63%

Table 6.7 Verification results for audio data alone according to age of participants
(Number of participants younger than 30 (<30): 63, number of participants older

than 30 (≥30): 30).

Combination (SKU dataset)
Results (SFOSE)(EER) Results (SC)(EER) Results (SFOSE+SC)(EER)

<30 ≥30 <30 ≥30 <30 ≥30

Ballpoint Pen-Plain Paper-Galaxy Note 3 9.84% 10.00% 9.52% 10.83% 4.76% 6.67%

Rollerball Pen-Plain Paper-Galaxy Note 3 2.38% 0.00% 11.11% 17.50% 1.59% 0.00%

Ballpoint Pen-Thin Paper-Galaxy Note 3 6.35% 3.33% 12.02% 21.11% 5.82% 2.22%

Rollerball Pen-Thin Paper-Galaxy Note 3 3.70% 1.67% 13.85% 17.78% 3.17% 0.00%

Ballpoint Pen-Plain Paper-iPhone 7 Plus 3.97% 10.00% 16.27% 16.67% 4.37% 3.33%

Rollerball Pen-Plain Paper-iPhone 7 Plus 3.17% 0.00% 8.25% 13.33% 1.67% 1.61%

Ballpoint Pen-Thin Paper-iPhone 7 Plus 7.94% 3.33% 3.17% 23.33% 2.65% 6.67%

Rollerball Pen-Thin Paper-iPhone 7 Plus 6.98% 3.33% 5.56% 10.00% 1.59% 2.22%
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Figure 6.3 ROC curves for spectral flux onset envelope of audio data, spectral
centroid of audio data and fusion of spectral flux onset envelope and spectral

centroid of audio data

Figure 6.3 shows the ROC curves plotted from only sound-based signature verification,

for all participants, according to features based on only the Spectral Flux Onset

Envelope of signal, features based on only the Spectral Centroid of the audio signal,

and features based on a fusion of Spectral Flux Onset Envelope and Spectral Centroid

of the audio signal. Curves correspond to the averaged values obtained from

pen-paper-phone type combinations in Table 6.5.

By fusing the two features (SFOSE and SC) obtained from sound, it is evident that

the success of the verification increased. The t-test statistical significance test [61] is

used to confirm this. P value is 0.0004808 as a consequence. The hypothesis that the

combination of features enhances the success of verification can be considered true

because this value is less than 0.05.

Numerous studies carried out signature verification with sound data (See Section

1.1.1). In Table 6.8, a comparison of these researches with the proposed approach

based only on audio data can be seen.
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Table 6.8 Comparison of the proposed approach on sound data only with some of
the signature sound verification studies on their own dataset

Study #Participants #Samples Feature Extrac-

tion

Classification Results

Li (2004, 2010)

[6] [5]
5 10 genuine, 10 forged Normalized

Hilbert envelope

of sounds

multi-layer back

propagation neu-

ral network

≥ 75% correct-

ness for different

scenarios

Khazei et al.

(2012) [10]
30 10 genuine AR coefficients,

cepstrum based

features

Euclidean,

Manhattan,

Chessboard

49%≤ EER≤
50.133%

Armiato et al.

(2016) [11]
55 10 genuine, 2 forged Combination of

wavelet-based

features.

Euclidean clas-

sifier, Modified

correlation

classifier

≥ 80% accuracy

Ding et al.

(2019) [13]
14 112 genuine, 60 forged A chord-based

method, to

estimate phase-

related changes

caused by small

activities.

Deep CNN EER: 5.5% AUC:

98.7%

Chen et al.

(2020) [14]
35 20 genuine, 20 forged SSIM, PSNR,

MSE, and Haus-

dorff distance.

LR,NB, RF, SVM EER: 1.25%

AUC: 98.2%

Wei et al. (2021)

[15]
12 70 genuine, 60 forged Zero Crossing

Rate, Spectral

Centroid, Spec-

tral Spread,

Sprectral Flux,

Spectral Entropy,

Spectral Rolloff.

One-Class clas-

sifier based on

CNN

EER: 5% AUC:

98.4%

Zhao et al.

(2021) [16]
40 32 genuine, 28 forged Spatio-Temporal

Features from

Channel Impulse

Response (CIR)

CNN-based

Multi-Modal

Siamese Net-

work

EER: 3.27%

Proposed (Ball-

point Pen-Plain

Paper-Galaxy

Note 3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 5.38%

Proposed

(Rollerball Pen-

Plain Paper-

Galaxy Note

3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER:1.08%

Proposed (Ball-

point Pen-Thin

Paper-Galaxy

Note 3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 4.30%

Proposed

(Rollerball

Pen-Thin Paper-

Galaxy Note

3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 2.15%

Proposed (Ball-

point Pen-Plain

Paper-iPhone 7

Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 4.52%

Continued on next page
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Table 6.8 – continued from previous page

Study #Participants #Samples Feature Extrac-

tion

Classification Results

Proposed

(Rollerball

Pen-Plain

Paper-iPhone 7

Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 1.79%

Proposed (Ball-

point Pen-Thin

Paper-iPhone 7

Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 3.87%

Proposed

(Rollerball

Pen-Thin Paper-

iPhone 7 Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 1.08%

6.1.3 Results of the Tests Using Fusion of Offline (Static) Signature Data and

Signature Sound (Dynamic) Data

By using the signature image and the signature sound together, the proposed approach

aims to enhance classification accuracy. This purpose is accomplished by combining

the combined features (LBP and SIFT) of SFOSE and SC graphic images of audio data

with the associated LBP and SIFT feature vectors extracted from the offline (static)

signature image (See Figure 6.1). Then, signature verification results are generated for

the LBP and SIFT vectors separately, and the results obtained for each of these vectors

are averaged. Thus a kind of score-level fusion is performed. Table 6.9 provides EER

values by gender and age for the verification of the fusion of offline (static) signature

data with signature sound (dynamic) data.

Table 6.9 Results of verification for the fusion of offline (static) signature data with
dynamic signature sound data, segmented by participant age (<30, ≥30) and

gender (Male (M), Female (F)).

Combination (SKU dataset)
Gender Age EER (Gender) EER (Age)

#M #F #(<30) #(≥30) M F <30 ≥30

Ballpoint Pen-Plain Paper-Galaxy Note 3 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Rollerball Pen-Plain Paper-Galaxy Note 3 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Ballpoint Pen-Thin Paper-Galaxy Note 3 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Rollerball Pen-Thin Paper-Galaxy Note 3 55 38 63 30 1.82% 0.00% 1.59% 0.00%

Ballpoint Pen-Plain Paper-iPhone 7 Plus 55 38 63 30 1.82% 0.00% 0.00% 3.33%

Rollerball Pen-Plain Paper-iPhone 7 Plus 55 38 63 30 0.00% 1.75% 1.06% 0.00%

Ballpoint Pen-Thin Paper-iPhone 7 Plus 55 38 63 30 1.56% 0.00% 0.00% 2.67%

Rollerball Pen-Thin Paper-iPhone 7 Plus 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Table 6.10 lists the verification findings obtained using signature sound (dynamic)

data only (SFOSE+SC), offline (static) signature image data only, and a combination

of both signature sound (dynamic) and offline (static) signature data. The statistical

significance test revealed that the p-value is 3.80× 10−5 to confirm the outcomes in
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Table 6.10. It can be concluded from this outcome that the findings in this table are

not a coincidence.

Table 6.10 Results of verification for the fusion of static (offline) signature data and
dynamic signatures sound data using various types of used pens, papers, and mobile

phone models

Combination (SKU dataset) Sig. Sound Sig. Image Fusion of signature sound and signature image

B.Point Pen-Plain Paper-Galaxy Note 3 EER: 5.38% EER: 11.47% GAR: 100.00% FAR:0.00% FRR: 0.00% EER: 0.00%

R.Ball Pen-Plain Paper-Galaxy Note 3 EER: 1.08% EER: 11.29% GAR: 100.00% FAR: 0.00% FRR: 0.00% EER: 0.00%

B.Point Pen-Thin Paper-Galaxy Note 3 EER: 4.30% EER: 5.02% GAR: 100.00% FAR: 0.00% FRR: 0.00% EER: 0.00%

R.Ball Pen-Thin Paper-Galaxy Note 3 EER: 2.15% EER: 10.22% GAR: 98.92% FAR: 1.08% FRR: 1.08% EER: 1.08%

B.Point Pen-Plain Paper-iPhone 7 Plus EER: 4.52% EER: 11.47% GAR: 98.92% FAR: 1.08% FRR: 1.08% EER: 1.08%

R.Ball Pen-Plain Paper-iPhone 7 Plus EER: 1.79% EER: 11.29% GAR: 96.77% FAR: 0.00% FRR: 3.23% EER: 0.08%

B.Point Pen-Thin Paper-iPhone 7 Plus EER: 3.87% EER: 5.02% GAR: 93.55% FAR: 0.00% FRR: 6.45% EER: 0.09%

R.Ball Pen-Thin Paper-iPhone 7 Plus EER: 1.08% EER: 10.22% GAR: 100.00% FAR: 0.00% FRR: 0.00% EER: 0.00%

Figure 6.4 shows the ROC curves for verification findings obtained using signature

sound (dynamic) data (SFOSE+SC), offline (static) signature data, and a fusion of

signature sound (dynamic) data, and offline (static) signature data. Curves reflect the

averaged results from the combinations in Tables 6.1, 6.5, and 6.10.

Figure 6.4 ROC Curves for signature sound (dynamic) data only, offline (static)
signature data only, and fusion of signature sound (dynamic) data and offline (static)

signature data
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6.1.4 Verification Results and Analysis when Query and Reference Signature

Pen-Paper-Phone Combinations are Different

It is analyzed how the cases where query signature data and reference signature data

are obtained with different combinations of pen, paper, and mobile phones will affect

the success of signature verification. Here, the reference signatures represent the four

genuine signatures that the classifier is trained with leave-one-out cross-validation.

Query signatures are signatures used to test the trained classifier. Query signatures

can be genuine or forgery. To test the authenticity of signatures, query signatures

using the different pen, paper, and phone combinations are cross-tested with reference

signatures using different combinations.

In this test phase, forged query signatures and reference signatures had the same

combination of paper and pen phone models. The genuine query signatures had

different combinations than reference and forged query signatures. In other words,

while we have four genuine (reference) signatures, the system is tested with four

forgeries with the same combination (pen-paper-phone model) of these reference

signatures. The system is also tested with four genuine signatures in different

combinations (pen-paper-phone model) from the reference signatures. Thus, it is

analyzed to what extent the system can detect genuine signatures when the reference

and forgeries are in the same combination, while genuine signatures have different

combinations (pen-paper-phone model). The results are in Table 6.11. For ease of

display, the combination values in Table 6.11 are coded with the letter "B" instead of

the ballpoint pen, the letter "R" instead of the rollerball pen, the letter "P" instead of

plain paper, the letter "T" instead of thin paper, the letter "S" for Samsung Galaxy Note

3, and the letter "I" instead of iPhone 7 Plus.

Table 6.11 Verification results according to different genuine query signature
combinations (pen-paper-phone model) versus the reference (same combination

with forged query signatures) signature combinations

Reference Sign. Combination Query Sign. Combination Sound (SFOSE+SC) Sound&Image Fusion

B-P-S R-P-S EER: 17.56% EER: 12.44%

B-P-S B-T-S EER: 8.60% EER: 7.17%

B-P-S R-T-S EER: 21.08% EER: 13.99%

B-P-S B-P-I EER: 21.24% EER: 7.53%

B-P-S R-P-I EER: 29.57% EER: 20.30%

B-P-S B-T-I EER: 17.20% EER: 15.41%

B-P-S R-T-I EER: 26.88% EER: 19.51%

R-P-S B-P-S EER: 14.70% EER: 12.26%

R-P-S B-T-S EER: 9.27% EER: 8.24%

R-P-S R-T-S EER: 7.53% EER: 5.91%

R-P-S B-P-I EER: 17.67% EER: 15.41%

R-P-S R-P-I EER: 10.32% EER: 1.08%

R-P-S B-T-I EER: 15.17% EER: 9.46%

R-P-S R-T-I EER: 10.60% EER: 6.67%

Continued on next page
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Table 6.11 – continued from previous page

Reference Sign. Combination Query Sign. Combination Sound (SFOSE+SC) Sound&Image Fusion

B-T-S B-P-S EER: 13.21% EER: 9.52%

B-T-S R-P-S EER: 20.28% EER: 15.86%

B-T-S R-T-S EER: 21.51% EER: 16.13%

B-T-S B-P-I EER: 29.72% EER: 21.15%

B-T-S R-P-I EER: 36.99% EER: 25.81%

B-T-S B-T-I EER: 21.25% EER: 2.69%

B-T-S R-T-I EER: 26.88% EER: 21.15%

R-T-S B-P-S EER: 23.11% EER: 19.83%

R-T-S R-P-S EER: 10.14% EER: 8.60%

R-T-S B-T-S EER: 12.69% EER: 14.11%

R-T-S B-P-I EER: 27.96% EER: 27.31%

R-T-S R-P-I EER: 24.19% EER: 18.28%

R-T-S B-T-I EER: 19.94% EER: 20.26%

R-T-S R-T-I EER: 12.61% EER: 1.61%

B-P-I B-P-S EER: 11.02% EER: 0.00%

B-P-I R-P-S EER: 9.68% EER: 6.45%

B-P-I B-T-S EER: 7.10% EER: 5.38%

B-P-I R-T-S EER: 11.83% EER: 9.06%

B-P-I R-P-I EER: 12.60% EER: 9.68%

B-P-I B-T-I EER: 8.60% EER: 5.65%

B-P-I R-T-I EER: 10.22% EER: 7.05%

R-P-I B-P-S EER: 21.39% EER: 16.13%

R-P-I R-P-S EER: 6.81% EER: 2.15%

R-P-I B-T-S EER: 12.75% EER: 10.75%

R-P-I R-T-S EER: 8.87% EER: 7.89%

R-P-I B-P-I EER: 16.13% EER: 12.66%

R-P-I B-T-I EER: 12.37% EER: 9.68%

R-P-I R-T-I EER: 5.16% EER: 5.02%

B-T-I B-P-S EER: 16.49% EER: 16.13%

B-T-I R-P-S EER: 15.59% EER: 11.18%

B-T-I B-T-S EER: 8.96% EER: 2.15%

B-T-I R-T-S EER: 18.49% EER: 10.75%

B-T-I B-P-I EER: 14.70% EER: 13.44%

B-T-I R-P-I EER: 20.74% EER: 13.86%

B-T-I R-T-I EER: 16.59% EER: 9.68%

R-T-I B-P-S EER: 24.30% EER: 21.51%

R-T-I R-P-S EER: 10.39% EER: 9.68%

R-T-I B-T-S EER: 16.67% EER: 18.49%

R-T-I R-T-S EER: 6.45% EER: 0.07%

R-T-I B-P-I EER: 20.43% EER: 18.28%

R-T-I R-P-I EER: 10.97% EER: 11.67%

R-T-I B-T-I EER: 13.76% EER: 16.13%

The average equal error rate (EER) of the proposed verification system is examined

by analyzing Tables 6.10 and 6.11 to see how much it is impacted when the query

signature’s pen-paper-phone combinations are different from the reference signature’s

pen-paper-phone combinations. The impact of each pen, paper, and phone item on

the average equal error rate is detected individually (See Table 6.12).
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Table 6.12 The average rates of increasing the EER when the pen-paper-phone
combination of the query signature is different from the pen-paper-phone

combination of the reference signature

Differnt Item for Query Signature Average Increase for Sound Average Increase for Fusion of Sound and Image

Pen EER: 12.67% EER: 12.60%

Paper EER: 6.84% EER: 8.08%

Phone EER: 9.31% EER: 2.14%

Paper-Phone EER: 12.55% EER: 12.28%

Pen-Phone EER: 17.02% EER: 15.83%

Pen-Paper EER: 14.17% EER: 13.06%

Pen-Paper-Phone EER: 18.41% EER: 16.53%

If only the pen in the pen-paper-phone combination of the query signature is

different from the pen-paper-phone combination of the reference signature, it has

been calculated how the test (query) signature affects the EER. In this condition, the

query signature increased EER by an average of 12.67% in the verification based on

sound data only. In signature verification based on the fusion of signature sound and

signature image, it increased the EER by an average of 12.60%.

If just the paper is changed in the paper-pen-phone combination for the query

signature, it has been found that the test (query) signature raises the EER by an

average of 6.84% in the verification based only on sound data. Additionally, based on

the fusion of the signature sound and signature image, the query signature increased

the EER by an average of 8.08%.

It has been determined that the query signature raised the EER by an average of

9.31% in the verification based solely on sound data if only the phone is different in

the paper-pen-phone combination for the query signature. The same query signature

increased the EER by an average of 2.14% in signature verification based on the fusion

of signature sound and signature image. Since the sounds of the same signature (same

signature image) are recorded by two different phones simultaneously, these values

are relatively lower, and the verification success is higher. Therefore, it is necessary

to test the system with query signatures using different combinations of phone-paper,

phone-pen, and paper-pen pairs to determine the effect of the phone difference in the

query signature, as detailed below.

If the paper and the phone are different in the paper-pen-phone combination for the

query signature, it is calculated that the test (query) signature increases the EER by

an average of 12.55% in the verification based on sound data only. In signature

verification based on the fusion of signature sound and image, the query signature

increased the EER by an average of 12.28%.
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When the pen and the phone used for the query signature differ from the

pen-paper-phone combination for the reference signature, it has been determined that

the test (query) signature raises the EER by an average of 17.02% in the verification

based solely on sound data. It also increased the EER by an average of 15.83% in

signature verification based on the fusion of signature sound and image.

It has been found that the test (query) signature raised the EER by an average of

14.17% in the verification based only on sound data when the pen and the paper used

for the query signature are different from the pen-paper-phone combination for the

reference signature. Additionally, it decreased signature verification success based on

the fusion of sound and image by an average of 13.06% EER.

When the pen-paper-phone combination of the query signature is completely different

from the pen-paper-phone combination of the reference signature, the sound-only

verification rate increases by an average of 18.41% EER. In verification based on the

fusion of signature and voice, there is an average increase of 16.53% EER.

In light of these results, it can be deduced that the item that affects the signature

verification performance the most is the changes in the pen type, then the phone

model, and the least in the paper type.

Equal error rates due to the differences in the pen-paper combinations of the query and

reference signatures used in the signature verification with only the signature image

are given in Table 6.13. (Combinations in Table 6.13 do not include the phone item

because only the signature image verifications are based, no sound data is used.)

Table 6.13 Verification results according to different genuine query static signature
combinations (pen-paper) versus the reference (same combination with forged query

signatures) static signature combinations

Reference Sign. Combination Query Sign. Combination Results (Static Signature Image)

B-P R-P EER: 21.29%

B-P B-T EER: 22.12%

B-P R-T EER: 22.89%

R-P B-T EER: 24.19%

R-P R-T EER: 13.73%

R-P B-P EER: 15.41%

B-T B-P EER: 21.15%

B-T R-P EER: 19.75%

B-T R-T EER: 20.07%
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7
DEEP LEARNING BASED APPROACH

Deep Learning is used to solve challenges across many different sectors. Deep learning

algorithms have been used for motion detection, face recognition, autonomous car

systems, speaker recognition, data mining, and so forth. This study also examined

the effectiveness of classification or verification utilizing features extracted via deep

learning models. During the preprocessing stage, the size of the image files is cut

in half. Grayscale conversion and inversion to the negative images are applied.

With the help of pre-trained models built on the foundation of deep convolutional

neural networks [62] [63], such as SigNet [24] (a model formed using just signature

data), VGG-16 [50], VGG-19 [50], and ResNet-50 [49], features are extracted. The

generated feature vectors are scaled to the 1×256 dimension. On each of the datasets

we have available, these pre-trained models have been evaluated and contrasted (See

Table 7.1). As in the preceding chapter, OC-SVM is used in the classification phase.

Results overwhelmingly demonstrate that, for signature datasets, SigNet outperforms

other pre-trained models. To verify signatures using the deep learning-based approach

with the dataset built for this research (SKU), SigNet is employed as a pre-trained

model.

For the purpose of verifying a signature using just audio data, two image files, Spectral

Flux Onset Strength Envelope of Signal (SFOSE) and Spectral Centroid (SC) of Signal,

are derived from the audio data of the signature. From each of these images, one

1×256-dimensional SigNet deep feature vector (CNN-based deep features utilizing

SigNet Model) is produced. For feature fusion based on audio data, 1×256 size SigNet

deep feature vectors from both audio-based images (SFOSE, SC) are combined to

generate a 1×512 dimensional SigNet deep feature vector. By eliminating the mean

and scaling to unit variance, the feature vector is standardized. This 1×512 size vector

is employed in the OC-SVM classifier. Using min-max normalization, the classification

score is normalized between 0 and 1. Depending on a threshold value, this score

indicates whether the signature represented by the combined vector is genuine or a

forgery.

56



Figure 7.1 Flowchart for deep learning-based approach
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For verification using only the static signature image, 1×256 SigNet deep feature

vectors are produced for each signature sample. Following the standard scaling

phase, the classifier is trained using these vectors. The previously indicated min-max

normalization procedure is applied to the test scores of the trained OC-SVM classifier.

Whether the score is greater than or less than the threshold value determines if the

examined signature is genuine or a forgery.

To improve the success of the verification, audio and image data are fused. Two

(SFOSE and SC) 1×256 size SigNet deep feature vectors from the audio data and

one 1×256 size SigNet deep feature vector from the image data are combined to

form a 1×768-dimensional SigNet deep feature vector. These vectors are used to

train the classifier after the standard scaling step. The score corresponding to a

1×768-dimensional SigNet deep feature vector is acquired by testing the OC-SVM

classifier. After all, min-max normalization is performed. The examined signature’s

genuineness is determined by whether the score exceeds the threshold value. As a

consequence, the fusion of signature sounds and corresponding signature images has

been accomplished, improving classification accuracy.

Using leave-one-out cross-validation, four genuine signatures are used for training,

while four forgeries are used for only testing. In the testing stage, each of

the four forgeries, and each left-out genuine signature during the leave-one-out

cross-validation procedures, are utilized together. The flowchart of the proposed deep

learning-based approach is shown in Figure 7.1.

Table 7.1 Pretrained models are compared using offline (static) signature datasets.
Run times are based on the verification procedures belonging to each participant in

the dataset. In SKU dataset ballpoint pen-plain paper combination is used.
(Computer specifications: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz processor,

32 GB RAM, Windows 10 OS)

Dataset #Participants
VGG-16 VGG-19 ResNet SigNet

Time(s.) EER Time(s.) EER Time(s.) EER Time(s.) EER

SKU 93 4.14 24.57% 5.84 9.00% 58.48 10.22% 7.27 3.23%

GPDS-100 100 4.40 28.80% 5.72 16.69% 63.19 15.00% 7.53 3.50%

MCYT-75 75 4.57 24.00% 5.66 18.00% 67.69 17.14% 8.80 5.33%

7.1 Test Results

The values of the False Acceptance Rate (FAR), Genuine Acceptance Rate (GAR), False

Reject Rate (FRR), and Equal Error Rate (EER) are measured for 93 participants, 55

male and 38 female, ranging in age from 19 to 64. The EER is defined as the value

where the FRR and FAR values are identical. When the FRR and FAR values are not

equivalent, the closest FRR and FAR values are picked, and the EER is derived over
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these values using linear interpolation. The verification results are based on several

pen-paper and phone model combinations. The dataset produced for this research is

given the name SKU for convenience of presentation (See Chapter 2).

7.1.1 Results of the Tests for the Deep Learning-Based Approach Using Only

Offline (Static) Signature Image Data

The results of using the deep learning-based technique on the static image dataset built

from scratch (SKU) are shown in Table 7.2 alongside those of other publicly accessible

offline signature datasets.

Table 7.2 Application of the deep learning-based approach to offline signature
images in the dataset built from scratch (SKU) and to publicly available offline

signature datasets (MCYT, GPDS).

Data Set #Participants #Samples Results

MCYT-75 [29] 75 4 EER: 5.33%

GPDS-100 [18] 100 4 EER: 3.50%

SKU (ballpoint pen and plain paper) 93 4 EER: 3.23%

SKU (rollerball pen and plain paper) 93 4 EER: 6.88%

SKU (ballpoint pen and thin paper) 93 4 EER: 3.23%

SKU (rollerball pen and thin paper) 93 4 EER: 6.09%

Table 7.3 Based on the MCYT-75 dataset, a comparison between the deep-learning
approach and some of the state-of-the-art publications.

Study Feature Extraction Classification #Samples Results

Masoudnia et al. [53] CNN SVM 10 EER: 5.85%

Ooi et al. [23] DRT with PCA PNN 5 EER: 9.87%

Zois et al. [54] Poset Grid Features SVM 5 EER: 6.02%

Maergner et al. [55] Keypoint Graphs GED, Bipartite 10 EER: 12.01%

Hafemann et al. [24] CNN (SigNet) SVM 10 EER: 2.87%

Proposed method for only signature image CNN (SigNet) OC-SVM 4 EER: 5.33%

Table 7.4 Based on the GPDS dataset, a comparison between the proposed approach
and some of the state-of-the-art publications.

Study Feature Extraction Classification #Samples Results

Hafemann et al. [56] CNN SVM 14 EER: 10.70%

Hafemann et al. [24] CNN (SigNet) SVM 5 EER: 2.41%

Xing et al.[57] Convolutional Siamese Cosine, Euclidean 54 EER: 10.37%

Narwade et al. [58] Pixel Matching Features SVM 12 EER:8.71%

Proposed method for only signature image CNN (SigNet) OC-SVM 4 EER: 3.50%

Results from the proposed deep learning-based approach and a few state-of-the-art

research when they were applied to publicly accessible offline (static) signature

datasets (MCYT, GPDS), are shown in Tables 7.3 and 7.4. A variety of study types

are covered in depth in paper [52], which provides a thorough summary of current

developments on offline signature verification.
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The EER values of the verification successes are derived just from the offline signature

(static) data from the dataset (SKU), and they are also separately computed according

to genders and age ranges (See Table 7.5).

Table 7.5 Equal error rate values for participants’ genders (Male (M), Female (F))
and ages (<30, ≥30) when using just static data (signature image).

Combination (SKU dataset)
Gender Age Results (Gender)(EER) Results (Age)(EER)

#M #F #(<30) #(≥30) M F <30 ≥30

Ballpoint Pen-Plain Paper 55 38 63 30 5.45% 0.00% 0.00% 10.00%

Rollerball Pen-Plain Paper 55 38 63 30 5.45% 7.89% 6.35% 3.34%

Ballpoint Pen-Thin Paper 55 38 63 30 3.64% 2.63% 3.17% 3.34%

Rollerball Pen-Thin Paper 55 38 63 30 3.64% 7.89% 8.73% 0.00%

Based only on offline (static) signature data, Figure 7.2 presents Receiver Operating

Characteristic (ROC) curve for averaged results obtained from all pen-paper

combinations in Table 7.2.

Figure 7.2 ROC curve for static offline signature verification according to averaged
error rates obtained from all pen-paper combinations.

7.1.2 Results of the Tests Using Only Dynamic Signature Sound Data

The features extracted from the Spectral Centroid (SC) image of the signature sound

alone, the features extracted from the images of the Spectral Flux Onset Strength
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Envelope (SFOSE) of the signature sound alone, and the combined feature vectors

(combined SigNet features) extracted from these images (SFOSE+SC) concatenated

for improving accuracy, are used separately for verification utilizing sound data only.

Four genuine and four forged signature sound samples from 93 participants are used

to perform signature verification using just audio data. A Signet feature vector is

generated from each of the two image files (SFOSE Image, SC Image) obtained

from the audio data. (See Figure 7.1). In the classification stage, leave-one-out

cross-validation is used together with OC-SVM. The results are shown in Table 7.6.

Table 7.6 Verification results for audio data alone (Number of participants: 93)

Combination (SKU dataset) Results (SFOSE [59]) Results (SC [60]) Results (SFOSE+SC)

Ballpoint Pen-Plain Paper-Galaxy Note 3 EER: 7.17% EER: 7.53% EER: 5.59%

Rollerball Pen-Plain Paper-Galaxy Note 3 EER: 3.23% EER: 6.09% EER: 2.15%

Ballpoint Pen-Thin Paper-Galaxy Note 3 EER: 5.16% EER: 9.68% EER: 3.23%

Rollerball Pen-Thin Paper-Galaxy Note 3 EER: 3.87% EER: 6.18% EER: 1.94%

Ballpoint Pen-Plain Paper-iPhone 7 Plus EER: 3.23% EER: 8.60% EER: 2.15%

Rollerball Pen-Plain Paper-iPhone 7 Plus EER: 2.22% EER: 8.31% EER: 4.57%

Ballpoint Pen-Thin Paper-iPhone 7 Plus EER: 5.38% EER: 8.60% EER: 2.96%

Rollerball Pen-Thin Paper-iPhone 7 Plus EER: 6.45% EER: 5.38% EER: 5.22%

Table 7.7 Verification results for audio data alone according to gender (Number of
male (M) participants: 55, number of female (F) participants: 38).

Combination (SKU dataset)
Results (SFOSE)(EER) Results (SC)(EER) Results (SFOSE+SC)(EER)

M F M F M F

Ballpoint Pen-Plain Paper-Galaxy Note 3 8.48% 5.26% 5.45% 7.89% 6.82% 4.39%

Rollerball Pen-Plain Paper-Galaxy Note 3 3.64% 4.39% 3.64% 10.53% 0.00% 5.26%

Ballpoint Pen-Thin Paper-Galaxy Note 3 3.64% 6.58% 10.91% 7.89% 3.64% 3.95%

Rollerball Pen-Thin Paper-Galaxy Note 3 4.73% 2.63% 1.82% 10.53% 0.91% 3.51%

Ballpoint Pen-Plain Paper-iPhone 7 Plus 2.27% 5.45% 9.09% 7.89% 1.82% 2.63%

Rollerball Pen-Plain Paper-iPhone 7Plus 1.14% 4.54% 5.45% 12.28% 3.03% 6.58%

Ballpoint Pen-Thin Paper-iPhone 7 Plus 2.27% 1.82% 7.27% 10.53% 0.00% 7.02%

Rollerball Pen-Thin Paper-iPhone 7 Plus 2.27% 7.27% 3.64% 7.89% 6.36% 3.51%

Table 7.8 Verification results for audio data alone according to age of participants
(Number of participants younger than 30 (<30): 63, number of participants older

than 30 (≥30): 30).

Combination (SKU dataset)
Results (SFOSE)(EER) Results (SC)(EER) Results (SFOSE+SC)(EER)

<30 ≥30 <30 ≥30 <30 ≥30

Ballpoint Pen-Plain Paper-Galaxy Note 3 6.35% 8.89% 6.35% 8.67% 4.23% 9.17%

Rollerball Pen-Plain Paper-Galaxy Note 3 3.70% 3.34% 5.56% 6.67% 1.59% 3.34%

Ballpoint Pen-Thin Paper-Galaxy Note 3 5.95% 3.34% 11.11% 6.67% 4.23% 3.34%

Rollerball Pen-Thin Paper-Galaxy Note 3 3.97% 3.34% 7.14% 3.33% 2.12% 1.67%

Ballpoint Pen-Plain Paper-iPhone 7 Plus 1.59% 10.00% 3.97% 20.00% 0.00% 6.67%

Rollerball Pen-Plain Paper-iPhone 7 Plus 1.59% 6.67% 7.94% 9.33% 2.65% 8.34%

Ballpoint Pen-Thin Paper-iPhone 7 Plus 6.35% 3.34% 7.94% 10.00% 4.23% 0.00%

Rollerball Pen-Thin Paper-iPhone 7 Plus 4.76% 10.00% 4.76% 6.67% 2.86% 10.00%

The Equal Error Rate values of the verification outcomes resulting from the audio

data are calculated separately for gender and age. EER values for verification using
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just audio data by gender are displayed in Table 7.7. EER values for verification using

solely audio data by age ranges are listed in Table 7.8.

Figure 7.3 displays the ROC curves for just sound-based signature verification

according to the Spectral Flux Onset Envelope-based verification values, the Spectral

Centroid-based verification values, and the combination of the Spectral Flux Onset

Envelope and Spectral Centroid-based verification values of the sound of signature

data.

The verification’s success is enhanced by combining the two features (SFOSE and SC)

acquired from Sound. This situation is verified using the t-test statistical significance

test. P value, as a result, is 0.0004137. This number is less than 0.05, allowing us to

accept the premise that the combination of these audio-based features improves the

success of verification.

Figure 7.3 ROC curves for spectral flux onset envelope of audio data, spectral
centroid of audio data and fusion of spectral flux onset envelope and spectral

centroid of audio data

Many studies use audio data for signature verification (See Section 1.1.1). Table 7.9

compares these studies and the deep learning-based approach purely based on audio

data.
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Table 7.9 Comparison of the proposed approach on sound data only with some of
the signature sound verification studies on their own dataset

Study #Participants #Samples Feature Extrac-

tion

Classification Results

Li (2004, 2010)

[6] [5]
5 10 genuine, 10 forged Normalized

Hilbert envelope

of sounds

multi-layer back

propagation neu-

ral network

≥ 75% correct-

ness for different

scenarios

Khazei et al.

(2012) [10]
30 10 genuine AR coefficients,

cepstrum based

features

Euclidean,

Manhattan,

Chessboard

49%≤ EER≤
50.133%

Armiato et al.

(2016) [11]
55 10 genuine, 2 forged Combination of

wavelet-based

features

Euclidean clas-

sifier, Modified

correlation

classifier

≥ 80% accuracy

Ding et al.

(2019) [13]
14 112 genuine, 60 forged A chord-based

method, to

estimate phase-

related changes

caused by small

activities.

Deep CNN EER: 5.5% AUC:

98.7%

Chen et al.

(2020) [14]
35 20 genuine, 20 forged SSIM, PSNR,

MSE, and Haus-

dorff distance.

LR,NB, RF, SVM EER: 1.25%

AUC: 98.2%

Wei et al. (2021)

[15]
12 70 genuine, 60 forged Zero Crossing

Rate, Spectral

Centroid, Spec-

tral Spread,

Sprectral Flux,

Spectral Entropy,

Spectral Rolloff

One-Class clas-

sifier based on

CNN

EER: 5% AUC:

98.4%

Zhao et al.

(2021) [16]
40 32 genuine, 28 forged Spatio-Temporal

Features from

Channel Impulse

Response (CIR)

CNN-based

Multi-Modal

Siamese Net-

work

EER: 3.27%

Proposed (Ball-

point Pen-Plain

Paper-Galaxy

Note 3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 5.59%

Proposed

(Rollerball Pen-

Plain Paper-

Galaxy Note

3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER:2.15%

Proposed (Ball-

point Pen-Thin

Paper-Galaxy

Note 3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 3.23%

Proposed

(Rollerball

Pen-Thin Paper-

Galaxy Note

3)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 1.94%

Proposed (Ball-

point Pen-Plain

Paper-iPhone 7

Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 2.15%

Continued on next page
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Table 7.9 – continued from previous page

Study #Participants #Samples Feature Extrac-

tion

Classification Results

Proposed

(Rollerball

Pen-Plain

Paper-iPhone 7

Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 4.57%

Proposed (Ball-

point Pen-Thin

Paper-iPhone 7

Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 2.96%

Proposed

(Rollerball

Pen-Thin Paper-

iPhone 7 Plus)

93 4 genuine SC+SFOSE, LBP,

SIFT

OC-SVM EER: 5.22%

7.1.3 Results of the Tests Using Fusion of Offline (Static) Signature Data and

Signature Sound (Dynamic) Data

The proposed deep learning-based approach intends to improve classification accuracy

by incorporating the signature sound and the signature image. The combined

feature vectors (SigNet) from the generated Spectral Flux Onset Envelope and

Spectral Centroid image graphics from each audio data are also combined with the

corresponding offline (static) signature image feature vectors (SigNet) in order to

achieve improvement in the verification success rates of results (See Figure 7.1). Table

7.10 lists the EER values for each gender and age group, as determined through testing

to verify individuals, using a fusion of offline (Static) signature data and signature

sound (Dynamic) data.

Table 7.10 Results of verification for the fusion of offline (static) signature data with
dynamic signature sound data, segmented by participant age (<30, ≥30) and

gender (Male (M), Female (F)).

Combination (SKU dataset)
Gender Age EER (Gender) EER (Age)

#M #F #(<30) #(≥30) M F <30 ≥30

Ballpoint Pen-Plain Paper-Galaxy Note 3 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Rollerball Pen-Plain Paper-Galaxy Note 3 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Ballpoint Pen-Thin Paper-Galaxy Note 3 55 38 63 30 1.82% 0.00% 1.59% 0.00%

Rollerball Pen-Thin Paper-Galaxy Note 3 55 38 63 30 0.00% 2.63% 1.59% 0.00%

Ballpoint Pen-Plain Paper-iPhone 7 Plus 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Rollerball Pen-Plain Paper-iPhone 7 Plus 55 38 63 30 0.00% 5.26% 3.17% 0.00%

Ballpoint Pen-Thin Paper-iPhone 7 Plus 55 38 63 30 0.00% 0.00% 0.00% 0.00%

Rollerball Pen-Thin Paper-iPhone 7 Plus 55 38 63 30 0.00% 2.63% 1.59% 0.00%

Table 7.11 summarizes the verification results calculated using offline (static)

signature image data only, signature sound data (dynamic) only, and a fusion of both

types of data. The p-value for the statistical significance test for the results in Table

7.11 is 0.0006485. This result indicates that the outcomes shown in the table are
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reliable.

Table 7.11 Results of verification for the fusion of static (offline) signature image
data and signature sound data (dynamic) using various types of used pens, papers,

and mobile phone models

Combination (SKU dataset) Sig. Sound Sig. Image Fusion of signature sound and signature image

B.Point Pen-Plain Paper-Galaxy Note 3 EER: 5.59% EER: 3.23% GAR: 100.00% FAR: 0.00% FRR: 0.00% EER: 0.00%

R.Ball Pen-Plain Paper-Galaxy Note 3 EER :2.15% EER: 6.88% GAR: 100.00% FAR: 0.00% FRR: 0.00% EER: 0.00%

B.Point Pen-Thin Paper-Galaxy Note 3 EER: 3.23% EER: 3.23% GAR: 97.85% FAR: 1.08% FRR: 2.15% EER: 1.08%

R.Ball Pen-Thin Paper-Galaxy Note 3 EER: 1.94% EER: 6.09% GAR: 98.92% FAR: 1.08% FRR: 1.08% EER: 1.08%

B.Point Pen-Plain Paper-iPhone 7 Plus EER: 2.15% EER: 3.23% GAR: 100.00% FAR: 0.00% FRR: 0.00% EER: 0.00%

R.Ball Pen-Plain Paper-iPhone 7 Plus EER: 4.57% EER: 6.88% GAR: 97.85% FAR: 2.15% FRR: 2.15% EER: 2.15%

B.Point Pen-Thin Paper-iPhone 7 Plus EER: 2.96% EER: 3.23% GAR: 100.00% FAR: 0.00% FRR: 0.00% EER: 0.00%

R.Ball Pen-Thin Paper-iPhone 7 Plus EER: 5.22% EER: 6.09% GAR: 98.92% FAR: 1.08% FRR: 1.08% EER: 1.08%

The ROC curves for verification findings derived using offline (static) signature data,

signature sound (dynamic) data, and fusion of offline (static) signature data with

signature sound (dynamic) data are shown in Figure 7.4. (Curves correspond to the

averaged error rates obtained from pen-paper-phone combinations given in Tables 7.2,

7.6, and 7.11.)

Figure 7.4 ROC Curves for signature sound (dynamic) data only, offline (static)
signature data only, and fusion of signature sound (dynamic) data with offline

(static) signature data
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Tables 7.12-7.13 compare the shallow (non-deep) learning-based approach versus the

deep learning-based approach in terms of verification results.

Table 7.12 Verification results according to shallow learning-based approach and
deep learning-based approach based on image data only, sound data only and fusion

of image and sound data

Approach Image-Based EER Sound-Based EER Image&Sound Fusion-Based EER

Shallow Learning 5.02-11.47% (Average: 9.50%) 1.08-5.38% (Average: 3.02%) 0.00-1.08% (Average: 0.29%)

Deep Learinng 3.23-6.88% (Average: 4.86%) 1.94-5.59% (Average: 3.48%) 0.00-2.15% (Average: 0.67%)

66



Table 7.13 Comparison of deep learning-based approach and shallow learning-based approach in terms of verification results.

Combination (SKU dataset)
Shallow learning based approach (Chapter 6) Deep learning based approach (Chapter 7)

Sound Image Sound+Image Fusion Sound Image Sound+Image Fusion

Ballpoint Pen-Plain Paper-Galaxy Note 3 EER: 5.38% EER: 11.47% EER: 0.00% EER: 5.59% EER: 3.23% EER: 0.00%

Rollerball Pen-Plain Paper-Galaxy Note 3 EER: 1.08% EER: 11.29% EER: 0.00% EER: 2.15% EER: 6.88% EER: 0.00%

Ballpoint Pen-Thin Paper-Galaxy Note 3 EER: 4.30% EER: 5.02% EER: 0.00% EER: 3.23% EER: 3.23% EER: 1.08%

Rollerball Pen-Thin Paper-Galaxy Note 3 EER: 2.15% EER: 10.22% EER: 1.08% EER: 1.94% EER: 6.09% EER: 1.08%

Ballpoint Pen-Plain Paper-iPhone 7 Plus EER: 4.52% EER: 11.47% EER: 1.08% EER: 2.15% EER: 3.23% EER: 0.00%

Rollerball Pen-Plain Paper-iPhone 7 Plus EER: 1.79% EER: 11.29% EER: 0.08% EER: 4.57% EER: 6.88% EER: 2.15%

Ballpoint Pen-Thin Paper-iPhone 7 Plus EER: 3.87% EER: 5.02% EER: 0.09% EER: 2.96% EER: 3.23% EER: 0.00%

Rollerball Pen-Thin Paper-iPhone 7 Plus EER: 1.08% EER: 10.22% EER: 0.00% EER: 5.22% EER: 6.09% EER: 1.08%
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8
RESULTS AND DISCUSSION

In this thesis, a different biometric data—the sound produced when a pen tip

rubs against paper while signing—is taken into account, and the improvement in

verification performance that results from combining this data with the matching

offline (static) signature image data is studied.

The internal microphones of two distinct mobile phone models are used to record

the sounds of the signatures throughout the data-collecting phase, which involved

samples obtained from 93 people. Participants’ signatures are collected using two

types of pens and papers, including ballpoint, rollerball, plain paper, and thin paper

with an auto-copy feature. For each paper and pen combination, each participant is

required to sign their authentic signatures at least four times. The identical participant

practiced imitating another participant’s signature before being asked to provide four

skilled forgery samples for each pen-paper combination. Even though some people’s

signatures are short and silent, these samples are included in the dataset, meaning

that no validation phase took into account the sound loudness, signature duration, et

cetera while creating the dataset. By not rejecting any participant or signature sample,

the proposed approach seeks to increase the usage area and produce a realistic result.

Two biometric verification approaches are proposed in this study. In the first approach,

LBP and SIFT features are extracted from the images generated by converting the

Spectral Flux Onset Envelope and Spectral Centroid graphics obtained from the audio

data (dynamic). Also, the offline (static) signature images are processed for the

extraction of the LBP and SIFT features. Both data types (static and dynamic)

underwent feature extraction in a writer-independent fashion. Writer-dependent

OC-SVM classifier is trained using the LBP and SIFT features independently with

four genuine signatures from each user, with leave-one-out cross-validation. Total

verification success is determined separately for signature sound and signature image

by averaging the two (LBP and SIFT) classification scores. The classification success

is also calculated for the verification based on the fusion of the signature image

and signature sound, which is done by combining the feature vectors acquired from
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the image and audio data. In the other proposed approach (deep learning-based),

deep features extracted from the images using a CNN-based model (SigNet) are

utilized rather than LBP and SIFT features. This approach is also subjected to feature

extraction in a writer-independent manner.

Table 6.1 and Table 7.2 demonstrate that the outcomes of using the proposed

approaches on offline (static) signature images from a dataset produced from scratch

(SKU dataset) are comparable to those of using the proposed approaches on the GPDS

and MCYT public datasets. These results indicate the coherency of the compiled data

set. It can be said that the proposed approach using only offline (static) signature

image data is quite comparable to the offline signature verification studies at the

state-of-the-art level, given that this study used only four genuine signatures in the

training of the classifier. The results obtained are similar to results from studies in

Tables 1.2-6.2-6.3-7.3-7.4, and publication [52]. A genuine signature sample and its

forged version are depicted in Figure 8.1. Figure 8.2 shows the spectral flux onset

strength envelope and spectral centroid images of the genuine signature sounds and

the forged signature sounds of the identical signatures. It can be concluded from

Figure 8.2 and the whole dataset assembled for this study that graphical images of

genuine and forged signature sounds can be identified rather clearly, even by the

unaided eye. Due to this, verification attempts that use solely sound signals have

a higher success rate as the Tables 6.10-7.11 show. The fact that verification is

done using random or simple forgeries in terms of signature sound is one of the

factors contributing to the high success rate of sound-based signature verification.

Namely, the imitator had never heard the sound of a signature before and had never

attempted to imitate it (even if the imitator does hear the sound of a signature,

it might be challenging for him or her to recall and replicate the sound he or

she hears). Tables 6.1-7.2-7.12 clearly show that when the proposed approach is

applied solely to offline (static) signature images from the dataset built, the equal

error rates range between 5.02% and 11.47% (Average: 9.50%) for the shallow

learning-based approach (Chapter 6) and 3.23% and 6.88% (Average: 4.86%) for

the deep learning-based approach (Chapter 7). When verification is done using solely

signature sound (dynamic) data, the equal error rate varies between 1.08% and 5.38%

(Average: 3.02%) for the shallow learning-based approach and 1.94% and 5.59%

(Average: 3.48%) for the deep learning-based approach, according to Table 6.5 and

Table 7.6. Table 7.13 shows that the equal error rates for the shallow learning-based

approach are reduced from the 5.02-11.47% range to the 0.00-1.08% range (Average:

0.29%) by fusing the offline (static) signature image with the signature sound

(dynamic). The equal error rate values in the deep learning-based approach also

dropped from a range of 3.23–6.88% to a range of 0.00–2.15% (Average: 0.67%).
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The outcomes of the statistical significance tests supported these findings. It is clear

from Chapter 7 that the deep learning-based approach produces superior outcomes

over the shallow learning-based approach when verification is done using only static

signature images (see Tables6.1-7.2). However, the effectiveness of both approaches

in verifying the fusion of sound and image is slightly different (Table 7.13). So, the

shallow learning-based method proposed in Chapter 6 is a robust substitute for the

deep learning-based approach for verification with the fusion of signature image and

sound because it does not have the relative drawbacks of the deep learning-based

approach, such as run times and the requirement to train the model file beforehand.

By analyzing the cases where the pen-paper-phone combinations of the reference

and query signatures are different, it can be concluded that the item that affects

the signature verification performance the most is the changes in the pen type, then

the phone model, and the least in the paper type (See Section 6.1.4). Last of

all, Since validation results based on female-male or age groups vary according to

pen-paper-phone combinations, it does not seem possible to make an inference about

whether verification based on any group is more successful or unsuccessful than the

other group.

Figure 8.1 Comparison of genuine signature image with skilled forgery image: a)
Genuine signature image b) Forged signature image

Figure 8.2 Comparison of graphic images obtained from signature sound data a)
Image of Onset Strength Envelope of genuine signature sound b) Image of Onset

Strength Envelope of forged signature sound c) Image of Spectral Centroid of
genuine signature sound d) Image of Spectral Centroid of forged signature sound
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8.1 Future Work

According to the findings of this study, it can be concluded that the sound generated

from a handwritten signature alone has a biometric value that merits further research.

Future research may include more individuals while taking into account various age

groups, surroundings, etc. It would make sense to increase audio-based verification

accuracy by collecting audio recordings from a sufficient number (for example, 500

or more) of individuals and utilizing that data to build a model in the deep learning

context. Higher background noise conditions may be used to gather data, and phones’

built-in microphones can be placed farther from the signing position. In order to

remove background noise from audio recordings, filtering algorithms or external

shotgun microphones might be utilized. It would be helpful to develop mobile

applications that begin recording audio as soon as signing begins and stop recording

audio as soon as it is complete automatically. Videos of signatures may be recorded

with their sounds included, and imitators can watch these videos repeatedly to copy

their sound components. Thus, it will be possible to build a dataset that contains a

different version of skilled forgeries for the audio data. By taking into account relevant

data privacy policies and laws, the acquired datasets—at least audio files—can be

made available to the public.
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[7] M. S. Sadak, N. Kahraman, U. Uludağ, “Dynamic and static feature fusion for
increased accuracy in signature verification,” Signal Processing: Image Commu-
nication, vol. 108, 2022.

[8] M. S. Sadak, N. Kahraman, U. Uludag, “Handwritten signature verification
system using sound as a feature,” in 2020 43rd International Conference on
Telecommunications and Signal Processing (TSP), IEEE, 2020, pp. 365–368.

[9] A. Seniuk, D. Blostein, “Pen acoustic emissions for text and gesture recognition,”
in 2009 10th International Conference on Document Analysis and Recognition,
IEEE, 2009, pp. 872–876.

[10] D. Khazaei, K. Maghooli, F. Afdideh, H. Azimi, “A unimodal person
authentication system based on signing sound,” in Proceedings of 2012 IEEE-
EMBS International Conference on Biomedical and Health Informatics, 2012,
pp. 152–154.

[11] D. A. Armiato, Y. Yano, V. Z. de Faveri, R. C. Guido, “Handwritten
signatures verification through their acoustic patterns based on the discrete
wavelet-packet transform and semantic-matching classifiers,” International
Journal of Semantic Computing, vol. 10, no. 04, pp. 557–567, 2016.

72



[12] H. Du, P. Li, H. Zhou, W. Gong, G. Luo, P. Yang, “Wordrecorder: Accurate
acoustic-based handwriting recognition using deep learning,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications, IEEE, 2018, pp. 1448–
1456.

[13] F. Ding, D. Wang, Q. Zhang, R. Zhao, “ASSV: handwritten signature verification
using acoustic signals,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–22, 2019.

[14] M. Chen, J. Lin, Y. Zou, R. Ruby, K. Wu, “Silentsign: Device-free handwritten
signature verification through acoustic sensing,” in 2020 IEEE International
Conference on Pervasive Computing and Communications (PerCom), IEEE, 2020,
pp. 1–10.

[15] Z. Wei, S. Yang, Y. Xie, F. Li, B. Zhao, “SVSV: Online handwritten signature
verification based on sound and vibration,” Information Sciences, vol. 572,
pp. 109–125, 2021.

[16] R. Zhao, D. Wang, Q. Zhang, X. Jin, K. Liu, “Smartphone-based handwritten
signature verification using acoustic signals,” Proceedings of the ACM on Human-
Computer Interaction, vol. 5, no. ISS, pp. 1–26, 2021.

[17] CEDAR. [Online]. Available: https://cedar.buffalo.edu/NIJ/data/
(visited on 01/26/2022).

[18] GPDS. [Online]. Available: http://www.gpds.ulpgc.es/download (visited
on 01/26/2022).

[19] A. Almehmadi, “A biometric-based verification system for handwritten
image-based signatures using audio to image matching,” IET Biometrics, vol. 11,
no. 2, pp. 124–140, 2022.

[20] Y. Guerbai, Y. Chibani, B. Hadjadji, “The effective use of the one-class svm
classifier for handwritten signature verification based on writer-independent
parameters,” Pattern Recognition, vol. 48, no. 1, pp. 103–113, 2015.
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